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1. Let E be a vector bundle over M and p 6= q be two points of M .

By definition of vector bundle, ∃ local trivialization π−1(U)
ϕ→ U ×Rk with q ∈ U . Let

h : M → R be a smooth bump function with h(p) = 0 and h(q) = 1 and supp(h) ⊂ U .

For x ∈ U , π−1(x)
ϕ∼= x× Rk (isomorphic vector spaces). Now take a basis e1, ..., ek of

Rk, so for each x ∈ U , we have that ϕ−1(x, ei) is a basis for π−1(x).

Define s : M → E by x 7→

{
ϕ−1(x, h(x)e1) x ∈ U
0x x /∈ U

. Where 0x means the 0 vector

in the vector space π−1(x). Also s is smooth as it is the product of smooth functions
h(−) · ϕ−1(−, e1).
Then for x /∈ U, π(s(x)) = π(0x) = x, and for x ∈ U ,we have π(s(x)) = π(ϕ−1(x, h(x)e1)) =
π1(x, h(x)e1) = x, so s is a section. (using comm. diagram for local trivializations pg.
104 of Lee). And we have s(q) = ϕ−1(q, e1) 6= 0, while s(p) = 0 if p /∈ U and
s(p) = ϕ−1(p, 0) = 0 if p ∈ U .

2. Let EC be a complex line bundle and ER be the same line bundle regarded as a real
vector bundle (so EC = ER and both use the same π : E → M , they have different
local trivializations).

Suppose EC is trivial, then ∃ global trivialization φC : EC →M × C.

Let φR be the composition ER
φC→M×C id×f→ M×R2, where C 3 z f7→ (<z,=z). Since φC

is a trivialization, π1◦φC = π. Then π1φR(v) = π1(π1φC(v),<π2(φC(v)),=π2(φC(v))) =
π1φC(v) = π(v), so the pg. 104 diagram commutes for φR (π1 ◦ φR = π).

Also π−1(x)
φC∼= x × C

id×f∼= x × R2 are R-vector space isomorphisms, and so their
composition φR is too, hence φR is a global trivialization for ER.

Conversely...

3. Let E be a real vector bundle over compact manifold M s.t. rk E > dimM . Show E
has a non-vanishing section.

Recall the transversality theorem says: Let A,B be smooth manifolds, f : A → B
be smooth, and C ⊂ B a regular submanifold. If f t C then f−1(C) is a regular
submanifold of A. Moreover smooth functions transverse to C are dense in Ck norm.

Also note that when dim A+ dimC < dimB, we have f t C ⇐⇒ f(B) ∩ C = ∅.
For the zero section s : M → E and the submanifold Z = {0x : x ∈ M} ⊂ E, we
have by the denseness part of transversality theorem that there is a smooth function
f : M → E that is arbitrarily C1 close to s, and f t Z. By assumption dimM +
dimZ = dimM < rkE ≤ dimE, so f t Z implies f(M)∩Z = ∅ i.e. f(x) 6= 0∀x ∈M .

Since f is arbitrarily C1 close to s, π ◦ f is arbitrarily close to π ◦ s = id.
Then since identity is a diffeomorphism so is π ◦ f (I haven’t done details of this yet).
Now we take σ = f ◦ (π ◦ f)−1 : M → E, and have that π ◦ σ = π ◦ f ◦ (π ◦ f)−1 = id,
so σ is a section. And for x ∈ M , set y = (π ◦ f)−1(x) ∈ M then σ(x) = f(y) 6= 0 so
σ is a non-vanishing section.
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4. Let π : E → M be a smooth vector bundle of rank k with {Uα}α∈A an open cover
of M having local trivializations φα : π−1(Uα) → Uα × Rk. For Uα ∩ Uβ 6= ∅, let
ταβ : Uα ∩ Uβ → GLk(R), be defined by φαφ

−1
β (p, v) = (p, ταβ(p)v).

For α, β, γ ∈ A with V := Uα ∩ Uβ ∩ Uγ 6= ∅. For p ∈ V and v ∈ Rk, we have:

(p, v)
φβφ

−1
γ7→ (p, τβγ(p)v)

φαφ
−1
β7→ (p, ταβ(p)τβγ(p)v), while the composition is φαφ

−1
γ which

is defined by (p, v) 7→ (p, ταγ(p)v). Hence ταβ(p)τβγ(p)v = ταγ(p)v and since v ∈ Rk

was arbitrary we have ταβ(p)τβγ(p) = ταγ(p).

5. (5-2) In example2 of pg. 105 on Lee, show E = [0, 1] × R/{(0, y) ∼ (1,−y)} with
π(x, y) = x is a vector bundle of rank 1 over S1 (thought of as R/Z via x ↔ e2πix for
now), and is non-trivial.

We have the local trivializations:
For U = S1 \ {1} = R/Z \ {1}, φ1 : π−1(U)→ U × R by (x, y) 7→ (x, y) and

V = S1\{−1} = R/Z\{1
2
}, φ2 : π−1(V )→ V×R by (x, y) 7→

{
(x, y) 0 ≤ x < 1

2

(x− 1,−y) 1
2
< x ≤ 1

.

I’ll verify that φ2 is a local trivialization (likewise φ1 is too).

First φ2(1,−y) = (0, y) = φ2(0, y) so φ2 is well-defined. And to see the pg. 104 diagram
commutes, we have for 0 ≤ x < 1

2
and y ∈ R that π(x, y) = x = π1(φ2(x, y)). Similarly

for 1
2
< x ≤ 1 we get π1φ2(x, y) = x− 1 = x = π(x, y) (since x− 1 = x in R/Z = S1).

*Also restricting φ2 to a fiber Ex gives the vector space isomorphism of R: y 7→ y or
y 7→ −y depending on if 0 ≤ x < 1

2
or 1

2
< x ≤ 1 resp.

If E were trivial we would have E ∼= S1 × R in other words the Mobius strip is
diffeomorphic to the cylinder. But the boundary of the Mobius strip is connected
while the boundary of the cylinder is disconnected, contradiction, hence E is not a
trivial vector bundle.

(5-6): We saw in * of problem 5-2 that the τ : U ∩ V → GL1(R) was given by

τ(x) =

{
(1) 0 < x < 1

2

(−1) 1
2
< x < 1

, which translates to τ(z) =

{
(1) =z > 0

(−1) =z < 0
under x 7→

e2πix. Since the bundle F from problem 5-4 is unique upto vector bundle isomorphism,
F ∼= E as they both have the same transition functions τ on the same set U ∩ V .

(5-12): The tautological bundle over GR(1, 2) = RP 1 is E = {([x], y) : [x] ∈ RP 1, y ∈
[x]} ⊂ RP 1 × R2 with π([x], y) = [x]. Let E ′

π→ S1 be the mobius bundle of 5-2.

For [x1, x2] ∈ RP 1 and x2 6= 0, let θ ∈ (0, π) be the angle the line makes measured
clockwise from x-axis (θ := 0 for x2 = 0).
For y ∈ spanR(x1, x2) let λy ∈ R s.t. y = λy~u where |~u| = 1 and ~u is on the line
[x1, x2] with positive y coordinate. (∗) Note for c ∈ R and z ∈ spanR(x1, x2), we have
cy = (cλy)~u and y + z = (λy + λz)~u⇒ λy+z = λy + λz and λcy = cλy.

Define F : E → E ′ by F ([x1, x2], y) =

{
( θ
π
, λy) x2 6= 0

(0, x1) ∼ (1,−x1) x2 = 0
.
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Now to make the diagram
E

F→ E ′

π
y yπ′

RP 1 f→ S1

commute, we set f([x1, x2]) := e2iθ. Finally

let p = [x1, x2] ∈ RP 1. To check F |Ep : Ep → E ′f(p) is linear we’ll use (∗) above. For

(p, y), (p, z) ∈ Ep, c ∈ R, we have:

F |Ep(p, y + cz) = ( θ
π
, λy+cz)

∗
= ( θ

π
, λy) + c( θ

π
, λz) = F |Ep(p, y) + cF |Ep(p, z).

Similarly, we can verify thatG : E ′ → E by (x, y) 7→ ([cos πx, sin πx], (y cosπx, y sin πx))
is a bundle inverse to F , so F is a vector bundle isomorphism. Now since E ′ is non-
trivial by 5-2, so is E.

(For 5-2,5-6,5-12 I don’t know if the maps are diffeomorphisms).

6. Let E be the tautological line bundle over RP n = GR(1, n + 1). Then RP 1 ↪→ RP n

by [x1, x2] 7→ [x1, x2, 0, ..., 0]. Now following the hint, suppose there is a global trivial-
ization φ : E → RP n × R. Then set E ′ = {([x1, x2, 0, ..., 0], (y1, y2, 0, ..., 0)) : (y1, y2) ∈
spanR(x1, x2)} = π−1(RP 1). So E ′ is the same as the tautological bundle over RP 1,
and taking φ|E′ : E ′ → π(E ′)× R = RP 1 × R gives a trivialization of the tautological
line bundle over RP 1 contradicting 5-12. Hence the tautological line bundle over RP n

is also non-trivial.

The unit sphere bundle SE := qp∈M{x ∈ Ep : |x| = 1} = {([x],± x
|x|) : [x] ∈ RP n}.

SE ∼= Sn by ([x], u) 7→ u ∈ Sn. With this identification, the projection SE → RP 1

corresponds to the map Sn → RP 1 by u 7→ [u] (thinknig of RP n as Sn/{x ∼ −x} it
corresponds to standard projection Sn → Sn/{x ∼ −x}).

7. Let E be tautological line bundle over CP n = GrC(1, n+ 1).

(a) By definition SE = {([z0, ..., zn], u) : [z0, ..., zn] ∈ CP n, u = eiθ ~z|~z| , 0 ≤ θ < 2π}
where ~z = (z0, ..., zn) (so |u| = 1).
Then we have the map SE → S2n+1 by ([z0, ..., zn], u) 7→ u where we view S2n+1 as
sitting inside Cn+1 ∼= R2n+2.

(b) For n = 1 the Hopf map is defined as H : S3 → S2 by (z0, z1) 7→ (2z0z1, |z0|2−|z1|2).
We’re thinking of S3 ⊂ C2 and S2 ⊂ C× R.

We have the maps CP \ {[1, 0]} → C → S2 \ {0, 0, 1} by [z0, z1] 7→ z0
z1

= x + iy 7→
( 2x
1+x2+y2

, 2y
1+x2+y2

, x
2+y2−1

1+x2+y2
) (here S2 ⊂ R3, last map is inverse of stereoproj).

Using x+ iy = z0
z1

, we get:

2x
1+x2+y2

=
z0
z1

+
z0
z1

1+
|z0|2
|z1|2

= z0z1+z0z1
|z1|2+|z0|2 = 2<(z0z1)

|z0|2+|z1|2 .

Likewise 2y
1+x2+y2

= 2=(z0z1)
|z1|2+|z2|2 and x2+y2−1

1+x2+y2
= |z0|2−|z1|2
|z0|2+|z1|2 .

So we are led to define P : CP → S2 ⊂ C×R by (z0, z1) 7→ ( 2z0z1
|z0|2+|z1|2 ,

|z0|2−|z1|2
|z0|2+|z1|2 ). And

P ends up being a diffeomorphism of CP with S2.
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Now to show that SE
π→ CP is the Hopf map, we’ll show the diagram:

SE
∼→ S3

π
y H

y
CP P→ S2

commutes where the ∼ is the diffeo from part (a). Let (z0, z1) ∈ S3 (so |z0|2+|z1|2 = 1),
then:

(z0, z1)
∼7→ ([z0, z1], (z0, z1))

π7→ [z0, z1]
P7→ (2z0z1, |z0|2 − |z1|2) = H(z0, z1).

For n > 1 the Hopf map is defined as the restriction of the natural projection
ρ : Cn+1 \ 0→ CP n to S2n+1 ⊂ Cn+1. So we want to show the diagram:

S2n+1 ∼→ SE
H

y ↙
CP n

commutes (where the diagonal arrow is π).
For ~z ∈ S2n+1 we have ~z

∼7→ ([~z], ~z)
π7→ [~z] = H(~z) so it does commute.

(c) For this part we’ll think of S3 ⊂ R4. We have S3 \ (0, 0, 0, 1)
f→ R3 by (x, y, z, w) 7→

( x
1−w ,

y
1−w ,

z
1−w ). Now we want to try to sketch f(π−1([z0, z1])) for various [z0, z1] while

identifying C2 with R4. Setting ~u = (z0,z1)
|(z0,z1)| = (x+ iy, z + iw) we get:

π−1([z0, z1]) = {eiθ~u : 0 ≤ θ < 2π} = {(x cos θ − y sin θ, x sin θ + y cos θ, z cos θ −
w sin θ, z sin θ + w cos θ) : 0 ≤ θ < 2π}. So the fiber over [z0, z1] is:

{( x cos θ − y sin θ

1− z sin θ − w cos θ
,

x sin θ + y cos θ

1− z sin θ − w cos θ
,

z cos θ − w sin θ

1− z sin θ − w cos θ
) : 0 ≤ θ < 2π}

Let’s always write [z0, z1] with a unit length representative. Fixing z0, we get from
|z0|2 + |z1|2 = 1 that the magnitude of z1 is fixed (but the argument may still vary)
i.e. z1 = r1e

it for 0 ≤ t ≤ 2π. Now the fiber over [z0, z1] can be described as
{eiθ(z0, r1eit) : 0 ≤ θ, t < 2π} (before going to R3) which seems like a torus. For
an example in R3 take z0 = 1√

2
⇒ z1 = 1√

2
eit to get the surface:

{( cos θ√
2−(cos t sin θ+sin t cos θ)

, sin θ√
2−(cos t sin θ+sin t cos θ)

, cos t cos θ−sin t sin θ√
2−(cos t sin θ+sin t cos θ)

) : 0 ≤ t, θ < 2π}. With

a little help from our matlab using friends we see it is in fact a torus. Also we can
fix some values of t to see fibers of indivudaul [ 1√

2
, 1√

2
eit] along our torus (see attached

picture).
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