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1. Let E be a vector bundle over M and p # ¢ be two points of M.

By definition of vector bundle, 3 local trivialization 7~ 1(U) = U x R¥ with ¢ € U. Let
h: M — R be a smooth bump function with h(p) = 0 and h(q) = 1 and supp(h) C U.

o)
For x € U, 7 !(x) & x x R* (isomorphic vector spaces). Now take a basis ey, ..., e; of
R*, so for each x € U, we have that ¢~ '(z,¢;) is a basis for 77!(z).

o Nz, h(z)er) z€U
0z ¢ U
in the vector space 7—!(z). Also s is smooth as it is the product of smooth functions
h(=)- 97 (= e).

Then for z ¢ U, 7(s(z)) = m(0,) = z, and for x € U,we have 71(s(z)) = 7(o " (z, h(z)er)) =
m1(z, h(z)e;) =, so s is a section. (using comm. diagram for local trivializations pg.

104 of Lee). And we have s(q) = ¢ '(g,e1) # 0, while s(p) = 0 if p ¢ U and
s(p) = ¢~ (p,0) =0ifpeU.

2. Let E¢ be a complex line bundle and Er be the same line bundle regarded as a real
vector bundle (so Ec = Eg and both use the same 7 : E — M, they have different
local trivializations).

Define s : M — E by z { Where 0, means the 0 vector

Suppose FE¢ is trivial, then 3 global trivialization ¢¢ : Ec — M x C.
Let ¢r be the composition Er % MxC' M xR?, where C > z EN (Rz,Jz). Since ¢¢
is a trivialization, m o¢c = m. Then m¢gr(v) = m1(m10c(v), Rra(dc(v)), Sma(dc(v))) =

moc(v) = w(v), so the pg. 104 diagram commutes for ¢r (m 0 pr = 7).

¢c idx f
Also 771(z) &2 2 x C = x x R? are R-vector space isomorphisms, and so their
composition ¢g is too, hence ¢g is a global trivialization for Eg.

Conversely...

3. Let E be a real vector bundle over compact manifold M s.t. rk £ > dim M. Show E
has a non-vanishing section.

Recall the transversality theorem says: Let A, B be smooth manifolds, f : A — B
be smooth, and C' C B a regular submanifold. If f & C then f~'(C) is a regular
submanifold of A. Moreover smooth functions transverse to C' are dense in C* norm.

Also note that when dim A 4+ dim C < dim B, we have f h C' < f(B)NC =10.

For the zero section s : M — E and the submanifold Z = {0, : © € M} C E, we
have by the denseness part of transversality theorem that there is a smooth function
f : M — E that is arbitrarily C! close to s, and f M Z. By assumption dim M +
dim Z = dim M < rkE < dim E, so f h Z implies f(M)NZ =(ie. f(x)# 0Vx € M.

Since f is arbitrarily C* close to s, o f is arbitrarily close to 7o s = id.

Then since identity is a diffeomorphism so is 7o f (I haven’t done details of this yet).
Now we take 0 = fo(mo f)™': M — E, and have that Tooc =mo fo(mo f)7! =id,
so o is a section. And for z € M, set y = (mo f)~'(x) € M then o(x) = f(y) # 0 so
0 is a non-vanishing section.
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4. Let m : E — M be a smooth vector bundle of rank k with {U,}.ca an open cover
of M having local trivializations ¢, : 7 1(U,) — U, x R*¥. For U, N Uz # 0, let
Top - Ua N Uz — GLE(R), be defined by gzﬁaqﬁgl(p, v) = (p, Tap(p)v).

For a, 8,7 € A with V :=U,NUzNU, # (). For p € V and v € R¥, we have:

—1 —1

)
(p,v) i (p, T3, (P)V) (P, Tup(p)Ts,(p)v), while the composition is ¢a®;" which
is defined by (p,v) = (p, Tay(p)v). Hence 7,5(p)75,(p)v = Ta,(p)v and since v € RF

was arbitrary we have 7,5(p)7s,(p) = Tay(p)-

5. (5-2) In example2 of pg. 105 on Lee, show E = [0,1] x R/{(0,y) ~ (1,—y)} with
7(z,y) = z is a vector bundle of rank 1 over S* (thought of as R/Z via z > e*™* for
now), and is non-trivial.

We have the local trivializations:

For U =S'"\ {1} =R/Z\ {1}, ¢ : m ' (U) - U x R by (z,y) — (z,y) and

V =SN\{-1} =R/Z\{i}, ¢o : 7 H(V) = VxR by (z,y) —

I'll verify that ¢s is a local trivialization (likewise ¢ is too).

First ¢o(1, —y) = (0,y) = ¢2(0,y) so ¢s is well-defined. And to see the pg. 104 diagram
commutes, we have for 0 < z < § and y € R that (z,y) = v = m(¢2(2, y)). Similarly
for 3 <z <1 weget mos(z,y) =2 —1=2z=mn(z,y) (sincex —1=2inR/Z=_5").

*Also restricting ¢, to a fiber E, gives the vector space isomorphism of R: y + y or
yr—>—ydependingon1f0§m<%or%<a:§ 1 resp.

If E were trivial we would have £ = S' x R in other words the Mobius strip is
diffeomorphic to the cylinder. But the boundary of the Mobius strip is connected
while the boundary of the cylinder is disconnected, contradiction, hence E is not a
trivial vector bundle.

(5-6): We saw in * of problem 5-2 that the 7 : UNV — GL;(R) was given by

1 0<z<3 1 Sz >0
T(z) = (1) * , which translates to 7(z) = (1) 92 under x +—
(—1) 5<x<1 (—-1) Sz<0
e?™ Since the bundle F from problem 5-4 is unique upto vector bundle isomorphism,
F = F as they both have the same transition functions 7 on the same set U NV
(5-12): The tautological bundle over Gg(1,2) = RP' is E = {([z],y) : [z] € RP',y €

s

[z]} € RP! x R? with n([z],y) = [z]. Let £’ = S* be the mobius bundle of 5-2.

For [z1, 73] € RP! and zy # 0, let 6 € (0,7) be the angle the line makes measured
clockwise from z-axis (6 := 0 for x5 = 0).

For y € spang(zy,22) let A\, € R s.t. y = A\ju where || = 1 and @ is on the line
[x1, x9] with positive y coordinate. (x) Note for ¢ € R and z € spang(z1,x2), we have
cy=(cA)@and y+z= (A, + )T = A\ygo = Ay + A, and Ay, = ¢,

(52 M) 22 7 0

Define F' : E — E’ by F(|x1,x2],y) = )
1 y ([xl xQ] y) {(07561) ~ (1,—,1'1) Ty :O
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F /
E - FE

Now to make the diagram | |7 commute, we set f([z1,29]) := . Finally
rRPT Lo

let p = [z1,25] € RP'. To check Flg, : E, — EY,, is linear we'll use (x) above. For
(p,y), (p,2) € E,,c € R, we have:

F|Ep(pay + CZ) = (%7/\1/-&-02) ; (%7)‘1/) +C(%7/\z) = F|Ep(p7 y) + CF|Ep(pv Z)

Similarly, we can verify that G : E' — E by (x,y) — ([cos mz, sin7z], (y cos mx, y sinmx))
is a bundle inverse to F', so F' is a vector bundle isomorphism. Now since E’ is non-
trivial by 5-2, so is E.

(For 5-2,5-6,5-12 I don’t know if the maps are diffeomorphisms).

. Let E be the tautological line bundle over RP" = Gg(1,n + 1). Then RP' — RP"
by [x1,xs] — [x1, 22,0, ...,0]. Now following the hint, suppose there is a global trivial-
ization ¢ : £ — RP™ x R. Then set E' = {([z1,22,0,...,0], (y1,¥2,0,...,0)) : (v1,y2) €
spang (71, 22)} = 71 (RP'). So E’ is the same as the tautological bundle over RP!,
and taking ¢|z : E' — w(E') x R = RP! x R gives a trivialization of the tautological
line bundle over RP! contradicting 5-12. Hence the tautological line bundle over RP™
is also non-trivial.

The unit sphere bundle SE := yen{z € E, : |z = 1} = {([z], ;) : [2] € RP"}.
SE = 8" by ([z],u) — u € S™. With this identification, the projection SE — RP!
corresponds to the map S™ — RP! by u + [u] (thinknig of RP™ as S™/{x ~ —x} it
corresponds to standard projection S™ — S™/{x ~ —z}).

. Let E be tautological line bundle over CP™ = Gre(1,n + 1).
(a) By definition SE = {([20, ..., Zu],u) : [20,..,24] € CP",u = €9Z.0 < 0 < 27}

121
where 2= (20, ..., 2,) (so |u| =1).
Then we have the map SE — S*"! by ([z0, ..., 2}, u) — u where we view S*"*! as

sitting inside C"+1 = R27+2,

(b) For n = 1 the Hopf map is defined as H : S® — S? by (20, 21) — (22071, |20]* —|21]?)-
We're thinking of S* C C? and S? C C x R.

We have the maps CP \ {[1,0]} — C — S?\ {0,0,1} by [20,21] — £ = x + iy —

21
( 2 2y z2+y2—1
1+x2+y2 ’ 1+:132+y2 ’ 1+$2+y2

Using x + 1y = j—?, we get:

) (here S? C R3, last map is inverse of stereoproj).

@+@

20 _ = "Em _ zZitzoz . 2R(20%1)
a4y 7y 2l T Pz T [Pz
[z1]
) ) 2 23(20%1) 2 4y2—1 202 —|z1[?
Likewise 120 = fptr 204 Toby = G

So we are led to define P: CP — 8% C C x R by (20, 21) > (=202 Eol=lz1ly - Aqq

[z012 421127 |20]?+|21]?

P ends up being a diffeomorphism of CP with S2.
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Now to show that SE = CP is the Hopf map, we’ll show the diagram:
SE & 53
L oal
cp 5 g2

commutes where the ~ is the diffeo from part (a). Let (29, 21) € S? (so |20]*+]z1]? = 1),
then:

~

(20, 21) =5 ([20, 21], (20, 21)) V% [20, 21] B> (22071, |20)* — |21)?) = H (20, 21).

For n > 1 the Hopf map is defined as the restriction of the natural projection
p:C"\ 0 — CP" to S ¢ C""!. So we want to show the diagram:

S+l & SR
Hl v
(OF

commutes (where the diagonal arrow is 7).
For 7 € S?"*! we have 2+ ([Z], 2) ¥~ [2] = H(Z) so it does commute.

(c) For this part we'll think of 3 C R%. We have S3\ (0,0,0,1) % R? by (2, y, z, w) >

(1%, 7, %-). Now we want to try to sketch f(7~"([z0, z1])) for various [z, z1] while
(20,21)

identifying C? with R*. Setting @ = o] = (x + iy, z + 1w) we get:

7 [20,21]) = {€¥%0 : 0 < 0 < 27} = {(vcosh — ysinh,xsinf + ycosb,zcos —
wsinf, zsinf +wcosh) : 0 < 6 < 27}. So the fiber over [z, z1] is:

xcosf —ysind xsinf + y cos 6 zcosf — wsinf

{(

0< b <2
1—zsin0—wcos€’1—zsin9—w0059’1—zsin¢9—wcos€) - m

Let’s always write [z, 21| with a unit length representative. Fixing zy, we get from
|20|* + |21)> = 1 that the magnitude of z; is fixed (but the argument may still vary)
ie. 2z = re for 0 < t < 2. Now the fiber over [z, z;] can be described as
{e(zp,m1€") : 0 < 0,t < 27} (before going to R?) which seems like a torus. For
an example in R? take zy = \/Li =2 = \%e“ to get the surface:

cosf sin 6 costcosf—sintsinf -0 < :
{ ( V/2—(cos tsin @+sint cos @)’ /2—(cos tsin f+sint cos )’ /2—(cos t sin f+sin t cos ) ) URS 2 S 27T} - With
a little help from our matlab using friends we see it is in fact a torus. Also we can

fix some values of ¢ to see fibers of indivudaul [\/LT \%e”] along our torus (see attached

picture).
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