1. Let E be a vector bundle over M and $p \neq q$ be two points of M.

By definition of vector bundle, \exists local trivialization $\pi^{-1}(U) \xrightarrow{\varphi} U \times \mathbb{R}^{k}$ with $q \in U$. Let $h: M \rightarrow \mathbb{R}$ be a smooth bump function with $h(p)=0$ and $h(q)=1$ and $\operatorname{supp}(h) \subset U$.
For $x \in U, \pi^{-1}(x) \stackrel{\varphi}{\cong} x \times \mathbb{R}^{k}$ (isomorphic vector spaces). Now take a basis e_{1}, \ldots, e_{k} of \mathbb{R}^{k}, so for each $x \in U$, we have that $\varphi^{-1}\left(x, e_{i}\right)$ is a basis for $\pi^{-1}(x)$.
Define $s: M \rightarrow E$ by $x \mapsto\left\{\begin{array}{ll}\varphi^{-1}\left(x, h(x) e_{1}\right) & x \in U \\ 0_{x} & x \notin U\end{array}\right.$. Where 0_{x} means the 0 vector in the vector space $\pi^{-1}(x)$. Also s is smooth as it is the product of smooth functions $h(-) \cdot \varphi^{-1}\left(-, e_{1}\right)$.
Then for $x \notin U, \pi(s(x))=\pi\left(0_{x}\right)=x$, and for $x \in U$, we have $\pi(s(x))=\pi\left(\varphi^{-1}\left(x, h(x) e_{1}\right)\right)=$ $\pi_{1}\left(x, h(x) e_{1}\right)=x$, so s is a section. (using comm. diagram for local trivializations pg. 104 of Lee). And we have $s(q)=\varphi^{-1}\left(q, e_{1}\right) \neq 0$, while $s(p)=0$ if $p \notin U$ and $s(p)=\varphi^{-1}(p, 0)=0$ if $p \in U$.
2. Let $E_{\mathbb{C}}$ be a complex line bundle and $E_{\mathbb{R}}$ be the same line bundle regarded as a real vector bundle (so $E_{\mathbb{C}}=E_{\mathbb{R}}$ and both use the same $\pi: E \rightarrow M$, they have different local trivializations).
Suppose $E_{\mathbb{C}}$ is trivial, then \exists global trivialization $\phi_{\mathbb{C}}: E_{\mathbb{C}} \rightarrow M \times \mathbb{C}$.
Let $\phi_{\mathbb{R}}$ be the composition $E_{\mathbb{R}} \xrightarrow{\phi_{\mathbb{C}}} M \times \mathbb{C} \xrightarrow{\text { id } \times f} M \times \mathbb{R}^{2}$, where $\mathbb{C} \ni z \stackrel{f}{\mapsto}(\Re z, \Im z)$. Since $\phi_{\mathbb{C}}$ is a trivialization, $\pi_{1} \circ \phi_{\mathbb{C}}=\pi$. Then $\pi_{1} \phi_{\mathbb{R}}(v)=\pi_{1}\left(\pi_{1} \phi_{\mathbb{C}}(v), \Re \pi_{2}\left(\phi_{\mathbb{C}}(v)\right), \Im \pi_{2}\left(\phi_{\mathbb{C}}(v)\right)\right)=$ $\pi_{1} \phi_{\mathbb{C}}(v)=\pi(v)$, so the pg. 104 diagram commutes for $\phi_{\mathbb{R}}\left(\pi_{1} \circ \phi_{\mathbb{R}}=\pi\right)$.
Also $\pi^{-1}(x) \stackrel{\phi_{\mathbb{C}}}{\cong} x \times \mathbb{C} \stackrel{\text { id } \times f}{\cong} x \times \mathbb{R}^{2}$ are \mathbb{R}-vector space isomorphisms, and so their composition $\phi_{\mathbb{R}}$ is too, hence $\phi_{\mathbb{R}}$ is a global trivialization for $E_{\mathbb{R}}$.
Conversely...
3. Let E be a real vector bundle over compact manifold M s.t. rk $E>\operatorname{dim} M$. Show E has a non-vanishing section.

Recall the transversality theorem says: Let A, B be smooth manifolds, $f: A \rightarrow B$ be smooth, and $C \subset B$ a regular submanifold. If $f \pitchfork C$ then $f^{-1}(C)$ is a regular submanifold of A. Moreover smooth functions transverse to C are dense in C^{k} norm.
Also note that when $\operatorname{dim} A+\operatorname{dim} C<\operatorname{dim} B$, we have $f \pitchfork C \Longleftrightarrow f(B) \cap C=\emptyset$.
For the zero section $s: M \rightarrow E$ and the submanifold $Z=\left\{0_{x}: x \in M\right\} \subset E$, we have by the denseness part of transversality theorem that there is a smooth function $f: M \rightarrow E$ that is arbitrarily C^{1} close to s, and $f \pitchfork Z$. By assumption $\operatorname{dim} M+$ $\operatorname{dim} Z=\operatorname{dim} M<\operatorname{rk} E \leq \operatorname{dim} E$, so $f \pitchfork Z$ implies $f(M) \cap Z=\emptyset$ i.e. $f(x) \neq 0 \forall x \in M$.
Since f is arbitrarily C^{1} close to $s, \pi \circ f$ is arbitrarily close to $\pi \circ s=\mathrm{id}$.
Then since identity is a diffeomorphism so is $\pi \circ f$ (I haven't done details of this yet). Now we take $\sigma=f \circ(\pi \circ f)^{-1}: M \rightarrow E$, and have that $\pi \circ \sigma=\pi \circ f \circ(\pi \circ f)^{-1}=\mathrm{id}$, so σ is a section. And for $x \in M$, set $y=(\pi \circ f)^{-1}(x) \in M$ then $\sigma(x)=f(y) \neq 0$ so σ is a non-vanishing section.
4. Let $\pi: E \rightarrow M$ be a smooth vector bundle of rank k with $\left\{U_{\alpha}\right\}_{\alpha \in A}$ an open cover of M having local trivializations $\phi_{\alpha}: \pi^{-1}\left(U_{\alpha}\right) \rightarrow U_{\alpha} \times \mathbb{R}^{k}$. For $U_{\alpha} \cap U_{\beta} \neq \emptyset$, let $\tau_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G L_{k}(\mathbb{R})$, be defined by $\phi_{\alpha} \phi_{\beta}^{-1}(p, v)=\left(p, \tau_{\alpha \beta}(p) v\right)$.
For $\alpha, \beta, \gamma \in A$ with $V:=U_{\alpha} \cap U_{\beta} \cap U_{\gamma} \neq \emptyset$. For $p \in V$ and $v \in \mathbb{R}^{k}$, we have:
$(p, v) \stackrel{\phi_{\beta} \phi_{\gamma}^{-1}}{\mapsto}\left(p, \tau_{\beta \gamma}(p) v\right) \stackrel{\phi_{\alpha} \phi_{\beta}^{-1}}{\mapsto}\left(p, \tau_{\alpha \beta}(p) \tau_{\beta \gamma}(p) v\right)$, while the composition is $\phi_{\alpha} \phi_{\gamma}^{-1}$ which is defined by $(p, v) \mapsto\left(p, \tau_{\alpha \gamma}(p) v\right)$. Hence $\tau_{\alpha \beta}(p) \tau_{\beta \gamma}(p) v=\tau_{\alpha \gamma}(p) v$ and since $v \in \mathbb{R}^{k}$ was arbitrary we have $\tau_{\alpha \beta}(p) \tau_{\beta \gamma}(p)=\tau_{\alpha \gamma}(p)$.
5. (5-2) In example 2 of pg. 105 on Lee, show $E=[0,1] \times \mathbb{R} /\{(0, y) \sim(1,-y)\}$ with $\pi(x, y)=x$ is a vector bundle of rank 1 over S^{1} (thought of as \mathbb{R} / \mathbb{Z} via $x \leftrightarrow e^{2 \pi i x}$ for now), and is non-trivial.
We have the local trivializations:
For $U=S^{1} \backslash\{1\}=\mathbb{R} / \mathbb{Z} \backslash\{1\}, \phi_{1}: \pi^{-1}(U) \rightarrow U \times \mathbb{R}$ by $(x, y) \mapsto(x, y)$ and
$V=S^{1} \backslash\{-1\}=\mathbb{R} / \mathbb{Z} \backslash\left\{\frac{1}{2}\right\}, \phi_{2}: \pi^{-1}(V) \rightarrow V \times \mathbb{R}$ by $(x, y) \mapsto\left\{\begin{array}{ll}(x, y) & 0 \leq x<\frac{1}{2} \\ (x-1,-y) & \frac{1}{2}<x \leq 1\end{array}\right.$.
I'll verify that ϕ_{2} is a local trivialization (likewise ϕ_{1} is too).
First $\phi_{2}(1,-y)=(0, y)=\phi_{2}(0, y)$ so ϕ_{2} is well-defined. And to see the pg. 104 diagram commutes, we have for $0 \leq x<\frac{1}{2}$ and $y \in \mathbb{R}$ that $\pi(x, y)=x=\pi_{1}\left(\phi_{2}(x, y)\right)$. Similarly for $\frac{1}{2}<x \leq 1$ we get $\pi_{1} \phi_{2}(x, y)=x-1=x=\pi(x, y)$ (since $x-1=x$ in $\mathbb{R} / \mathbb{Z}=S^{1}$).
*Also restricting ϕ_{2} to a fiber E_{x} gives the vector space isomorphism of $\mathbb{R}: y \mapsto y$ or $y \mapsto-y$ depending on if $0 \leq x<\frac{1}{2}$ or $\frac{1}{2}<x \leq 1$ resp.
If E were trivial we would have $E \cong S^{1} \times \mathbb{R}$ in other words the Mobius strip is diffeomorphic to the cylinder. But the boundary of the Mobius strip is connected while the boundary of the cylinder is disconnected, contradiction, hence E is not a trivial vector bundle.
(5-6): We saw in ${ }^{*}$ of problem 5-2 that the $\tau: U \cap V \rightarrow G L_{1}(\mathbb{R})$ was given by $\tau(x)=\left\{\begin{array}{ll}(1) & 0<x<\frac{1}{2} \\ (-1) & \frac{1}{2}<x<1\end{array}\right.$, which translates to $\tau(z)=\left\{\begin{array}{ll}(1) & \Im z>0 \\ (-1) & \Im z<0\end{array}\right.$ under $x \mapsto$ $e^{2 \pi i x}$. Since the bundle F from problem 5-4 is unique upto vector bundle isomorphism, $F \cong E$ as they both have the same transition functions τ on the same set $U \cap V$.
(5-12): The tautological bundle over $G_{\mathbb{R}}(1,2)=\mathbb{R} P^{1}$ is $E=\left\{([x], y):[x] \in \mathbb{R} P^{1}, y \in\right.$ $[x]\} \subset \mathbb{R} P^{1} \times \mathbb{R}^{2}$ with $\pi([x], y)=[x]$. Let $E^{\prime} \xrightarrow{\pi} S^{1}$ be the mobius bundle of 5-2.
For $\left[x_{1}, x_{2}\right] \in \mathbb{R} P^{1}$ and $x_{2} \neq 0$, let $\theta \in(0, \pi)$ be the angle the line makes measured clockwise from x-axis ($\theta:=0$ for $x_{2}=0$).
For $y \in \operatorname{span}_{\mathbb{R}}\left(x_{1}, x_{2}\right)$ let $\lambda_{y} \in \mathbb{R}$ s.t. $y=\lambda_{y} \vec{u}$ where $|\vec{u}|=1$ and \vec{u} is on the line [x_{1}, x_{2}] with positive y coordinate. $(*)$ Note for $c \in \mathbb{R}$ and $z \in \operatorname{span}_{\mathbb{R}}\left(x_{1}, x_{2}\right)$, we have $c y=\left(c \lambda_{y}\right) \vec{u}$ and $y+z=\left(\lambda_{y}+\lambda_{z}\right) \vec{u} \Rightarrow \lambda_{y+z}=\lambda_{y}+\lambda_{z}$ and $\lambda_{c y}=c \lambda_{y}$.
Define $F: E \rightarrow E^{\prime}$ by $F\left(\left[x_{1}, x_{2}\right], y\right)=\left\{\begin{array}{ll}\left(\frac{\theta}{\pi}, \lambda_{y}\right) & x_{2} \neq 0 \\ \left(0, x_{1}\right) \sim\left(1,-x_{1}\right) & x_{2}=0\end{array}\right.$.
$\begin{array}{rrll}\text { Now to make the diagram } \pi \downarrow & \stackrel{F}{\rightarrow} & E^{\prime} \\ & \downarrow \pi^{\prime} \text { commute, we set } f\left(\left[x_{1}, x_{2}\right]\right):=e^{2 i \theta} \text {. Finally }\end{array}$

$$
\mathbb{R} P^{1} \quad \xrightarrow{f} \quad S^{1}
$$

let $p=\left[x_{1}, x_{2}\right] \in \mathbb{R} P^{1}$. To check $\left.F\right|_{E_{p}}: E_{p} \rightarrow E_{f(p)}^{\prime}$ is linear we'll use $(*)$ above. For $(p, y),(p, z) \in E_{p}, c \in \mathbb{R}$, we have:
$\left.F\right|_{E_{p}}(p, y+c z)=\left(\frac{\theta}{\pi}, \lambda_{y+c z}\right) \stackrel{*}{=}\left(\frac{\theta}{\pi}, \lambda_{y}\right)+c\left(\frac{\theta}{\pi}, \lambda_{z}\right)=\left.F\right|_{E_{p}}(p, y)+\left.c F\right|_{E_{p}}(p, z)$.
Similarly, we can verify that $G: E^{\prime} \rightarrow E$ by $(x, y) \mapsto([\cos \pi x, \sin \pi x],(y \cos \pi x, y \sin \pi x))$ is a bundle inverse to F, so F is a vector bundle isomorphism. Now since E^{\prime} is nontrivial by $5-2$, so is E.
(For 5-2,5-6,5-12 I don't know if the maps are diffeomorphisms).
6. Let E be the tautological line bundle over $\mathbb{R} P^{n}=G_{\mathbb{R}}(1, n+1)$. Then $\mathbb{R} P^{1} \hookrightarrow \mathbb{R} P^{n}$ by $\left[x_{1}, x_{2}\right] \mapsto\left[x_{1}, x_{2}, 0, \ldots, 0\right]$. Now following the hint, suppose there is a global trivialization $\phi: E \rightarrow \mathbb{R} P^{n} \times \mathbb{R}$. Then set $E^{\prime}=\left\{\left(\left[x_{1}, x_{2}, 0, \ldots, 0\right],\left(y_{1}, y_{2}, 0, \ldots, 0\right)\right):\left(y_{1}, y_{2}\right) \in\right.$ $\left.\operatorname{span}_{\mathbb{R}}\left(x_{1}, x_{2}\right)\right\}=\pi^{-1}\left(\mathbb{R} P^{1}\right)$. So E^{\prime} is the same as the tautological bundle over $\mathbb{R} P^{1}$, and taking $\left.\phi\right|_{E^{\prime}}: E^{\prime} \rightarrow \pi\left(E^{\prime}\right) \times \mathbb{R}=\mathbb{R} P^{1} \times \mathbb{R}$ gives a trivialization of the tautological line bundle over $\mathbb{R} P^{1}$ contradicting 5 -12. Hence the tautological line bundle over $\mathbb{R} P^{n}$ is also non-trivial.
The unit sphere bundle $S E:=\amalg_{p \in M}\left\{x \in E_{p}:|x|=1\right\}=\left\{\left([x], \pm \frac{x}{|x|}\right):[x] \in \mathbb{R} P^{n}\right\}$. $S E \cong S^{n}$ by $([x], u) \mapsto u \in S^{n}$. With this identification, the projection $S E \rightarrow \mathbb{R} P^{1}$ corresponds to the map $S^{n} \rightarrow \mathbb{R} P^{1}$ by $u \mapsto[u]$ (thinknig of $\mathbb{R} P^{n}$ as $S^{n} /\{x \sim-x\}$ it corresponds to standard projection $\left.S^{n} \rightarrow S^{n} /\{x \sim-x\}\right)$.
7. Let E be tautological line bundle over $\mathbb{C} P^{n}=G r_{\mathbb{C}}(1, n+1)$.
(a) By definition $S E=\left\{\left(\left[z_{0}, \ldots, z_{n}\right], u\right):\left[z_{0}, \ldots, z_{n}\right] \in \mathbb{C} P^{n}, u=e^{i \theta} \frac{\vec{z}}{|z|}, 0 \leq \theta<2 \pi\right\}$ where $\vec{z}=\left(z_{0}, \ldots, z_{n}\right)$ (so $|u|=1$).
Then we have the map $S E \rightarrow S^{2 n+1}$ by $\left(\left[z_{0}, \ldots, z_{n}\right], u\right) \mapsto u$ where we view $S^{2 n+1}$ as sitting inside $\mathbb{C}^{n+1} \cong \mathbb{R}^{2 n+2}$.
(b) For $n=1$ the Hopf map is defined as $H: S^{3} \rightarrow S^{2}$ by $\left(z_{0}, z_{1}\right) \mapsto\left(2 z_{0} \bar{z}_{1},\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}\right)$. We're thinking of $S^{3} \subset \mathbb{C}^{2}$ and $S^{2} \subset \mathbb{C} \times \mathbb{R}$.
We have the maps $\mathbb{C} P \backslash\{[1,0]\} \rightarrow \mathbb{C} \rightarrow S^{2} \backslash\{0,0,1\}$ by $\left[z_{0}, z_{1}\right] \mapsto \frac{z_{0}}{z_{1}}=x+i y \mapsto$ $\left(\frac{2 x}{1+x^{2}+y^{2}}, \frac{2 y}{1+x^{2}+y^{2}}, \frac{x^{2}+y^{2}-1}{1+x^{2}+y^{2}}\right)$ (here $S^{2} \subset \mathbb{R}^{3}$, last map is inverse of stereoproj).
Using $x+i y=\frac{z_{0}}{z_{1}}$, we get:
$\frac{2 x}{1+x^{2}+y^{2}}=\frac{\frac{z_{0}}{z_{1}}+\frac{\bar{z}_{0}}{z_{1}}}{1+\frac{z_{0} 0^{2}}{\left|z_{1}\right|^{2}}}=\frac{z_{0} \bar{z}_{1}+\bar{z}_{0} z_{1}}{\left|z_{1}\right|^{2}+\left|z_{0}\right|^{2}}=\frac{2 \Re\left(z_{0} \bar{z}_{1}\right)}{\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}}$.
Likewise $\frac{2 y}{1+x^{2}+y^{2}}=\frac{2 \Im\left(z_{0} \bar{z}_{1}\right)}{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}$ and $\frac{x^{2}+y^{2}-1}{1+x^{2}+y^{2}}=\frac{\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}}{\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}}$.
So we are led to define $P: \mathbb{C} P \rightarrow S^{2} \subset \mathbb{C} \times \mathbb{R}$ by $\left(z_{0}, z_{1}\right) \mapsto\left(\frac{2 z_{0} \bar{z}_{1}}{\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}}, \frac{\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}}{\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}}\right)$. And P ends up being a diffeomorphism of $\mathbb{C} P$ with S^{2}.

Now to show that $S E \xrightarrow{\pi} \mathbb{C} P$ is the Hopf map, we'll show the diagram:

commutes where the \sim is the diffeo from part (a). Let $\left(z_{0}, z_{1}\right) \in S^{3}\left(\right.$ so $\left.\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}=1\right)$, then:

$$
\left(z_{0}, z_{1}\right) \stackrel{\sim}{\mapsto}\left(\left[z_{0}, z_{1}\right],\left(z_{0}, z_{1}\right)\right) \stackrel{\pi}{\mapsto}\left[z_{0}, z_{1}\right] \stackrel{P}{\mapsto}\left(2 z_{0} \bar{z}_{1},\left|z_{0}\right|^{2}-\left|z_{1}\right|^{2}\right)=H\left(z_{0}, z_{1}\right) .
$$

For $n>1$ the Hopf map is defined as the restriction of the natural projection $\rho: \mathbb{C}^{n+1} \backslash 0 \rightarrow \mathbb{C} P^{n}$ to $S^{2 n+1} \subset \mathbb{C}^{n+1}$. So we want to show the diagram:

commutes (where the diagonal arrow is π).
For $\vec{z} \in S^{2 n+1}$ we have $\vec{z} \stackrel{\sim}{\mapsto}([\vec{z}], \vec{z}) \stackrel{\pi}{\mapsto}[\vec{z}]=H(\vec{z})$ so it does commute.
(c) For this part we'll think of $S^{3} \subset \mathbb{R}^{4}$. We have $S^{3} \backslash(0,0,0,1) \xrightarrow{f} \mathbb{R}^{3}$ by $(x, y, z, w) \mapsto$ $\left(\frac{x}{1-w}, \frac{y}{1-w}, \frac{z}{1-w}\right)$. Now we want to try to sketch $f\left(\pi^{-1}\left(\left[z_{0}, z_{1}\right]\right)\right)$ for various $\left[z_{0}, z_{1}\right]$ while identifying \mathbb{C}^{2} with \mathbb{R}^{4}. Setting $\vec{u}=\frac{\left(z_{0}, z_{1}\right)}{\left|\left(z_{0}, z_{1}\right)\right|}=(x+i y, z+i w)$ we get:
$\pi^{-1}\left(\left[z_{0}, z_{1}\right]\right)=\left\{e^{i \theta} \vec{u}: 0 \leq \theta<2 \pi\right\}=\{(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta, z \cos \theta-$ $w \sin \theta, z \sin \theta+w \cos \theta): 0 \leq \theta<2 \pi\}$. So the fiber over $\left[z_{0}, z_{1}\right]$ is:

$$
\left\{\left(\frac{x \cos \theta-y \sin \theta}{1-z \sin \theta-w \cos \theta}, \frac{x \sin \theta+y \cos \theta}{1-z \sin \theta-w \cos \theta}, \frac{z \cos \theta-w \sin \theta}{1-z \sin \theta-w \cos \theta}\right): 0 \leq \theta<2 \pi\right\}
$$

Let's always write $\left[z_{0}, z_{1}\right]$ with a unit length representative. Fixing z_{0}, we get from $\left|z_{0}\right|^{2}+\left|z_{1}\right|^{2}=1$ that the magnitude of z_{1} is fixed (but the argument may still vary) i.e. $z_{1}=r_{1} e^{i t}$ for $0 \leq t \leq 2 \pi$. Now the fiber over [z_{0}, z_{1}] can be described as $\left\{e^{i \theta}\left(z_{0}, r_{1} e^{i t}\right): 0 \leq \theta, t<2 \pi\right\}$ (before going to \mathbb{R}^{3}) which seems like a torus. For an example in \mathbb{R}^{3} take $z_{0}=\frac{1}{\sqrt{2}} \Rightarrow z_{1}=\frac{1}{\sqrt{2}} e^{i t}$ to get the surface:
$\left\{\left(\frac{\cos \theta}{\sqrt{2}-(\cos t \sin \theta+\sin t \cos \theta)}, \frac{\sin \theta}{\sqrt{2}-(\cos t \sin \theta+\sin t \cos \theta)}, \frac{\cos t \cos \theta-\sin t \sin \theta}{\sqrt{2}-(\cos t \sin \theta+\sin t \cos \theta)}\right): 0 \leq t, \theta<2 \pi\right\}$. With a little help from our matlab using friends we see it is in fact a torus. Also we can fix some values of t to see fibers of indivudaul $\left[\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} e^{i t}\right]$ along our torus (see attached picture).

