P Sj, 2.23.i. One of the greatest advances in theoretical physics of the nineteenth century was Maxwell's formulation of the equations of electromagnetism

$$
\begin{aligned}
\nabla \times E & =-\frac{1}{c} \frac{\partial B}{\partial t} & & \text { (Faraday's law) } \\
\nabla \times H & =\frac{4 \pi}{c} J+\frac{1}{c} \frac{\partial D}{\partial t} & & \text { (Ampere's law) } \\
\nabla \cdot D & =4 \pi \rho & & \text { (Gauss' law) } \\
\nabla \cdot B & =0 & & \text { (no magnetic monopoles). }
\end{aligned}
$$

Here:

$$
\begin{aligned}
& c: \text { speed of light } \\
& E: \text { electric field } \\
& H: \text { magnetic field } \\
& J: \text { current density } \\
& \rho: \text { charge density } \\
& B: \text { magnetic induction } \\
& D: \text { dielectric displacement }
\end{aligned}
$$

E, H, J, B, D are vector fields and ρ is a function on \mathbb{R}^{3}. All depend on time t.
In space-time \mathbb{R}^{4}, with coordinates $\left(x_{1}, x_{2}, x_{3}, x_{4}\right)$, where $x_{4}:=c t$, we introduce forms

$$
\begin{aligned}
\alpha & =\left(E_{1} d x_{1}+E_{2} d x_{2}+E_{3} d x_{3}\right) d x_{4}+B_{1} d x_{2} d x_{3}+B_{2} d x_{3} d x_{1}+B_{3} d x_{1} d x_{2} \\
\beta & =-\left(H_{1} d x_{1}+H_{2} d x_{2}+H_{3} d x_{3}\right) d x_{4}+D_{1} d x_{2} d x_{3}+D_{2} d x_{3} d x_{1}+D_{3} d x_{1} d x_{2} \\
\gamma & =\frac{1}{c}\left(J_{1} d x_{2} d x_{3}+J_{2} d x_{3} d x_{1}+J_{3} d x_{1} d x_{2}\right) d x_{4}-\rho d x_{1} d x_{2} d x_{3}
\end{aligned}
$$

Show Maxwell's equations are equivalent to

$$
\begin{array}{r}
d \alpha=0 \\
d \beta+4 \pi \gamma=0
\end{array}
$$

A: The differential in \mathbb{R}^{4} is pretty straightforward. For a basic k-form $f d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}} \in$ $\Omega^{k}\left(\mathbb{R}^{4}\right)$, the differential is a $(k+1)$-form defined to be:

$$
d\left(f d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}\right)=\sum_{i=1}^{4} \frac{\partial f}{\partial x_{i}} d x_{i} \wedge d x_{i_{1}} \wedge \cdots \wedge d x_{i_{k}}
$$

ie. take the partials with each coordinate, and tack the corresponding $d x_{i} \wedge$ - to the wedges.

We can see that each α, β have electric and magnetic pieces:

$$
\begin{aligned}
& \alpha=\underbrace{\left(E_{1} d x_{1}+E_{2} d x_{2}+E_{3} d x_{3}\right) d x_{4}}_{\text {electric }}+\underbrace{B_{1} d x_{2} d x_{3}+B_{2} d x_{3} d x_{1}+B_{3} d x_{1} d x_{2}}_{\text {magnetic }}, \\
& \beta=\underbrace{-\left(H_{1} d x_{1}+H_{2} d x_{2}+H_{3} d x_{3}\right) d x_{4}}_{\text {magnetic }}+\underbrace{D_{1} d x_{2} d x_{3}+D_{2} d x_{3} d x_{1}+D_{3} d x_{1} d x_{2}}_{\text {electric }} .
\end{aligned}
$$

Let's start small. Since the differential is linear, we can look at summands of α, β, γ individually and generalize. The first summand of α is $E_{1} d x_{1} \wedge d x_{4}$. Then the differential

$$
\begin{aligned}
d\left(E_{1} d x_{1} \wedge d x_{4}\right) & =\sum_{i=1}^{4} \frac{\partial E_{1}}{\partial x_{i}} d x_{i} \wedge d x_{1} \wedge d x_{4} \\
& =\frac{\partial E_{1}}{\partial x_{2}} d x_{2} \wedge d x_{1} \wedge d x_{4}+\frac{\partial E_{1}}{\partial x_{3}} d x_{3} \wedge d x_{1} \wedge d x_{4} \\
& =-\frac{\partial E_{1}}{\partial x_{2}} d x_{1} \wedge d x_{2} \wedge d x_{4}-\frac{\partial E_{1}}{\partial x_{3}} d x_{1} \wedge d x_{3} \wedge d x_{4}
\end{aligned}
$$

after getting rid of terms with repeated indices and rearranging them in increasing order. We can infer the other two (they look similar, with different permutations of $i=1,2,3$). That's the electric field part of α.

The first summand of the magnetic part of α is $B_{1} d x_{2} \wedge d x_{3}$. This is straightforward by now:

$$
\begin{aligned}
d\left(B_{1} d x_{2} \wedge d x_{3}\right) & =\sum_{i=1}^{4} \frac{\partial B_{1}}{\partial x_{i}} d x_{i} \wedge d x_{2} \wedge d x_{3} \\
& =\frac{\partial B_{1}}{\partial x_{1}} d x_{1} \wedge d x_{2} \wedge d x_{3}+\frac{\partial B_{1}}{\partial x_{4}} d x_{2} \wedge d x_{3} \wedge d x_{4}
\end{aligned}
$$

The other two terms will also be permutations of the indices of the above.
Putting them all together, we emerge with

$$
\begin{aligned}
& d \alpha_{\text {electric }}=\left(\frac{\partial E_{2}}{\partial x_{1}}-\frac{\partial E_{1}}{\partial x_{2}}\right) d x_{1} \wedge d x_{2} \wedge d x_{4}+\left(\frac{\partial E_{3}}{\partial x_{1}}-\frac{\partial E_{3}}{\partial x_{1}}\right) d x_{3} \wedge d x_{1} \wedge d x_{4} \\
&+\left(\frac{\partial E_{3}}{\partial x_{2}}-\frac{\partial E_{2}}{\partial x_{3}}\right) d x_{2} \wedge d x_{3} \wedge d x_{4}
\end{aligned}
$$

The $\operatorname{curl}(E)$ term is palpable here. We can see each component of the curl in each expression above. We can rewrite the above more explicitly as $\sum_{i=1}^{3}(\nabla \times E)_{i} d \hat{x_{i}}$, where $(\nabla \times E)_{i}$ is the $i^{\text {th }}$ component of the curl, and $\hat{d x_{i}}:=d x_{1} \wedge \cdots \wedge \hat{d x_{i}} \wedge \cdots \wedge d x_{4}$.

Calculating the magnetic part:

$$
\begin{aligned}
d \alpha_{\text {magnetic }}= & \left(\frac{\partial B_{1}}{\partial x_{1}}+\frac{\partial B_{2}}{\partial x_{2}}+\frac{\partial B_{3}}{\partial x_{3}}\right) d x_{1} \wedge d x_{2} \wedge d x_{3} \\
& +\frac{\partial B_{1}}{\partial x_{4}} d x_{2} \wedge d x_{3} \wedge d x_{4} \\
& +\frac{\partial B_{2}}{\partial x_{4}} d x_{3} \wedge d x_{1} \wedge d x_{4} \\
& +\frac{\partial B_{3}}{\partial x_{4}} d x_{1} \wedge d x_{2} \wedge d x_{4}
\end{aligned}
$$

The first term above we recognize as $(\nabla \cdot B) d x_{1} \wedge d x_{2} \wedge d x_{3}$. Since this is the only $d x_{1} \wedge$ $d x_{2} \wedge d x_{3}$ term, linearly independent with all the others, saying that $d \alpha=0$ implies that $\nabla \cdot B=0$, ie. no magnetic monopoles.

Since $x_{4}=c t \Longrightarrow \frac{\partial}{\partial x_{4}}=\frac{d x_{4}}{d t} \frac{\partial}{\partial t}=\frac{1}{c} \frac{\partial}{\partial t}$, we can rewrite the magnetic part as a sum: $\sum_{i=1}^{3} \frac{1}{c} \frac{\partial B_{i}}{\partial t} d \hat{x}_{i}$.

Altogether, we have

$$
d \alpha=\sum_{i=1}^{3}\left((\nabla \times E)_{i}+\frac{1}{c} \frac{\partial B_{i}}{\partial t}\right) d \hat{x}_{i}=0
$$

Since $d \hat{x}_{i}$ area all linearly independent, this means each coefficient is 0 , ie.

$$
(\nabla \times E)_{i}=\frac{-1}{c} \frac{\partial B_{i}}{\partial t}
$$

for $i=1,2,3$. This is just Faraday's law in each component.
The second is a similar computation; we'll skip it.

