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P Sj, 2.23.i. One of the greatest advances in theoretical physics of the nineteenth century
was Maxwell’s formulation of the equations of electromagnetism

∇×E = −1
c
∂B
∂t

(Faraday’s law)

∇×H =
4π
c
J +

1
c
∂D
∂t

(Ampere’s law)

∇ ·D = 4πρ (Gauss’ law)
∇ ·B = 0 (no magnetic monopoles).

Here:

c : speed of light
E : electric field
H : magnetic field
J : current density
ρ : charge density
B : magnetic induction
D : dielectric displacement

E,H,J,B,D are vector fields and ρ is a function on R3. All depend on time t.
In space-time R4, with coordinates (x1,x2,x3,x4), where x4 := ct, we introduce forms

α = (E1dx1 +E2dx2 +E3dx3)dx4 +B1dx2dx3 +B2dx3dx1 +B3dx1dx2,

β = −(H1dx1 +H2dx2 +H3dx3)dx4 +D1dx2dx3 +D2dx3dx1 +D3dx1dx2,

γ =
1
c

(J1dx2dx3 + J2dx3dx1 + J3dx1dx2)dx4 − ρdx1dx2dx3.

Show Maxwell’s equations are equivalent to

dα = 0,
dβ + 4πγ = 0.

A: The differential inR4 is pretty straightforward. For a basic k-form f dxi1∧· · ·∧dxik ∈
Ωk(R4), the differential is a (k + 1)-form defined to be:

d(f dxi1 ∧ · · · ∧ dxik ) =
4∑
i=1

∂f

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxik .

ie. take the partials with each coordinate, and tack the corresponding dxi ∧ − to the
wedges.

We can see that each α,β have electric and magnetic pieces:

α = (E1dx1 +E2dx2 +E3dx3)dx4︸                              ︷︷                              ︸
electric

+B1dx2dx3 +B2dx3dx1 +B3dx1dx2︸                                      ︷︷                                      ︸
magnetic

,

β = −(H1dx1 +H2dx2 +H3dx3)dx4︸                                  ︷︷                                  ︸
magnetic

+D1dx2dx3 +D2dx3dx1 +D3dx1dx2︸                                       ︷︷                                       ︸
electric

.
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Let’s start small. Since the differential is linear, we can look at summands of α,β,γ indi-
vidually and generalize. The first summand of α is E1dx1 ∧ dx4. Then the differential

d(E1dx1 ∧ dx4) =
4∑
i=1

∂E1

∂xi
dxi ∧ dx1 ∧ dx4

=
∂E1

∂x2
dx2 ∧ dx1 ∧ dx4 +

∂E1

∂x3
dx3 ∧ dx1 ∧ dx4

= −∂E1

∂x2
dx1 ∧ dx2 ∧ dx4 −

∂E1

∂x3
dx1 ∧ dx3 ∧ dx4,

after getting rid of terms with repeated indices and rearranging them in increasing order.
We can infer the other two (they look similar, with different permutations of i = 1,2,3).
That’s the electric field part of α.

The first summand of the magnetic part of α is B1dx2 ∧ dx3. This is straightforward
by now:

d(B1dx2 ∧ dx3) =
4∑
i=1

∂B1

∂xi
dxi ∧ dx2 ∧ dx3

=
∂B1

∂x1
dx1 ∧ dx2 ∧ dx3 +

∂B1

∂x4
dx2 ∧ dx3 ∧ dx4.

The other two terms will also be permutations of the indices of the above.
Putting them all together, we emerge with

dαelectric =
(
∂E2

∂x1
− ∂E1

∂x2

)
dx1 ∧ dx2 ∧ dx4 +

(
∂E3

∂x1
− ∂E3

∂x1

)
dx3 ∧ dx1 ∧ dx4

+
(
∂E3

∂x2
− ∂E2

∂x3

)
dx2 ∧ dx3 ∧ dx4.

The curl(E) term is palpable here. We can see each component of the curl in each expres-
sion above. We can rewrite the above more explicitly as

∑3
i=1(∇×E)i ˆdxi , where (∇×E)i is

the ith component of the curl, and ˆdxi := dx1 ∧ · · · ∧ ˆdxi ∧ · · · ∧ dx4.

Calculating the magnetic part:

dαmagnetic =
(
∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3

)
dx1 ∧ dx2 ∧ dx3

+
∂B1

∂x4
dx2 ∧ dx3 ∧ dx4

+
∂B2

∂x4
dx3 ∧ dx1 ∧ dx4

+
∂B3

∂x4
dx1 ∧ dx2 ∧ dx4.
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The first term above we recognize as (∇ · B) dx1 ∧ dx2 ∧ dx3. Since this is the only dx1 ∧
dx2 ∧ dx3 term, linearly independent with all the others, saying that dα = 0 implies that
∇ ·B = 0, ie. no magnetic monopoles.

Since x4 = ct =⇒ ∂
∂x4

= dx4
dt

∂
∂t = 1

c
∂
∂t , we can rewrite the magnetic part as a sum:∑3

i=1
1
c
∂Bi
∂t

ˆdxi .
Altogether, we have

dα =
3∑
i=1

(
(∇×E)i +

1
c
∂Bi
∂t

)
ˆdxi = 0,

Since ˆdxi area all linearly independent, this means each coefficient is 0, ie.

(∇×E)i =
−1
c
∂Bi
∂t
,

for i = 1,2,3. This is just Faraday’s law in each component.

The second is a similar computation; we’ll skip it.
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