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being open, L$' is dense in U;. and hence in V. Let 

linearly independent 

we show that Ui;. is dense in V. If this were not the case there is an open set 
W c V such that 

for a certain smooth function h nonzero on W. Let c: (-E,E)+ W be an 
integral curve of the vector field h(a/ax ') - (a/axj). Then (f 0 c)'(t) = 
T&,f (c'(t)) -0 so that f 0 c is constant on (- E ,  E )  contradicting injectivity off.) 

2.3 EXTERIOR ALGEBRA 

The calculus of Cartan concerns exterior differential forms, which are 
sections of a vector bundle of linear exterior forms on the tangent spaces of a 
manifold. We begin with the exterior algebra of a vector space and extend 
this fiberwise to a vector bundle. As with tensor fields, the most important 
case is the tangent bundle of a manifold, which is considered in the next 
section. 

2.3.1 Definition. Let E be a finite-dimensional real vector space. Let QO(E) = 
R. Q'(E) = E*, an4 in general, Q k ( ~ )  = ~ , k  (E, R ) ,  the vector space of skew 
symmetric k multilinear maps or exterior k - f o m  on E. 

We leave as an easy exercise the fact that Qk(E) is a vector subspace of 
TkO(E>. 

Recall that the permutation group on k elements, denoted Sk, consists of 
all bijections 9: {I,. .., k)+{l, ..., k) together with the structure of a group 
under composition. Clearly, Sk has order k! .  Letting (k, X )  denote R\{O) 
with :he multiplicative group structure, we have a homoomonqshism sign: 
Sk-t(R, X ) .  That is, for a, r ESk,  sign(a Or)=(~ignu)(~ignr).  The image of 
sign is the subgroup { -  1,1), while its kernel consists of the subgroup of even 
permutations. One other fact we shall need is the following, which the reader 
can easily check: If G is a group and go E G, the map Rgo : G+ G: g ~ g g ~  is a 
bijection. 

9 2.3.2 Definition. me alternation mapping A : T ~ ( E ) +  T:(E) (as before, we 
$ do not index the A )  is defined by 
m 

where the sum is over aN k! elements of Sk. 
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2.3.3 Proposition. A is a linear mapping onto Q k ( ~ ) ,  A ~ S ~ ~ ( E )  is the iden- 
tity, and A 0 A =A. 

ProoJ: Linearity of A follows at once. If t €Q k ( ~ ) ,  then 

since (sign = 1 and Sk has order k!. Second, for t E T:(E) we have 

since aHo7 is a bijection and sign is a homomorphism. This proves the first 
two assertions, and the last follows from them. . 

Then we may define the exterior product as follows. 

2.3.4 Definition. If a E Tf(E) and j.3 E c ( E ) ,  define a ~ j 3  €Qk+'(E) by 
a A p = (k + I)!/ k!l! A ( a  €9 p). (Again, we do not index A.) In particular, for 
a E T:(E) = R, we put ~ A P  =  PA^ = 4. 

There are several possible conventions for defining the wedge product A. 
The one here conforms to Spivak [1965], and Bourbaki [I9711 but not to 
Kobayashi-Nomizu [I9631 or Guillemin-Pollack [1976]. See Robbin [I9741 
for a lively discussion of what conventions are possible. 

Our definition of a A/? is the one that eliminates the largest number of 
constants later. The reader should prove that, for exterior forms, 

(aAp)(el,. -. ,ek+,) = Z'(sign @)a(eO(l), -. . ,e,(k))p(e~(k+ I), . yea(k+ I)) 

where 2' denotes the sum over all shuffles; that is, permutations a of 
{1,2, ..., k + l )  such that a ( l ) < . - .  <a(k) and o (k+ l )< -a -  <a(k+I). The 
basic properties of the operation A are given in the following. 

2.3.5 Proposition. For a E T*), P E v ( E ) ,  and y E T;(E), we have 

( i )  anP  = AaAP = ar\Ap; 
(ii) A is bilinear; 
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(iii) a~jlj = ( - l ) k l B ~ a ;  
(iu) a ~ @ ~ y )  = (ar \P)~y .  

Proof; For (i), first note that if a € Sk and at(e,, .  . . ,ek)= t(ea(l), . . .,ea(kS, 
then A (at)  = (sign u)A t for 

1 A(at)(el,  . . . , e,) = - z (sign p)t(e,(l), . . . , e,(k)) 
k! p,, 

= (sign u)At(el,  . . . , ek) 

since p~ pa is a bijection. Then, 

A(Aa@j3)(e,,  . . . , ek, . . . , ek+1) =A(Aff(e17 . - - 7 ek)8(ek+l, . . ek+l)) 

1 = - 2 (signr)A (ra@f4)(el, .  . . ,ek+,) (linearity of A )  
k! ?ESk 

where r' E Sk+[, 

so sign r = sign r' and r a  @jlj = rt(a@jlj). Thus the above becomes 

$4 
S 
4 m 

=A(a@P)(e l , . . . , ek+t )  
13 

Thus A(Aa@P) = A(a@jlj); that is, ( A a ) ~ p = a ~ p .  
Z The other equality in (i) is similar. 
% Now (ii) is clear since @ is bilinear and A is linear. 
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For (iii), let a, E Sk+l be given by a,(l, . . . , k + I )  = (k + 1, . . . , k + 
1, 1, . . . , k). Then a €3 &el, . . . , ek+& = P €3 a(eadl), . . . , eoo(k+,)). Hence, by 
the proof of (i), A(a C3 P) = (sign a,,)A@ €3 a). But sign a, = (- I)~'. Finally, 
(iv) follows from (i). rn 

2.3.6 Definition. The direct sum of the spaces Q k ( ~ )  (k = 0, 1, 2 . . . ) 
together with its structure as a real vector space and multiplication induced by 
A, is called the exterior algebra of E, or the Grassmann algebra of E. 

Using 2.3.5 and a simple induction argument, it follows that if a ,  
i = 1, . . . , k are one-forms, then 

We can now find a basis for O k ( ~ ) .  

2.3.7 Proposition. Let n = dim E. Then for k > n, Qk (E) = (0) , while for 
0 < k < n, Qk (E) has dimension (It). The exterior algebra over E has dimension 
2". Indeed, if 2 = (el, . . . ,en) is an ordered basis of E and 2* = (a1,. . . ,an) its dual 
basis, a basis of Q k ( ~ )  is 

ProoJ: First we show that the indicated wedge products span Qk(E). If 
t € Ok (E), then from 1.7.2 we know that 

where the summation convention indicates that this should be summed over 
all choices of i,, . . . , ik between 1 and n, not just the ordered ones of the 
proposition. Now if the linear operator A is applied to this sum, we have, 
since t E Ok (E), 

so that 
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by the above remark. Therefore, 

The sum still runs over all choices of the i,, . . . , ik and we want only distinct, 
ordered ones. However, since t is skew symmetric, the coefficient t(ei,, . . . ,eik) 
is 0 if i,, . . . , ik are not distinct. If they are distinct and a E Sk, then 

since both t and the wedge product change by a factor of signa. [Use 
2.3.5(iii), where cy and f3 are one-forms.] Since there are k! of these rearrange- 
ments, we are left with 

Secondly, we show 

are linearly independent. Suppose that 

For fixed i;, . . . , ii, let j L +  ,, . . . , j; denote the complementary set of indices, 
j L + ,  < - - - <jA. Then 

ti,.. . cyil ,., . . . Aa'kA&i+'A . . . ,.,&A = 0 
i l < . .  - <ik 

However, this reduces to 

ti,,. . . . . . r\d = 0 

But alr\ - . . ~cy" # 0, as a ' ~  . - . r\cyn(e1, . . . , en) = 1. Hence 

The proposition now follows. . 
s 
9 

2.3.8 Definition. The nonzero elements of the one-dimensional space Qn(E) 8 
"P are called volume elements. If w, and w, are volume elements, we scly w, and w, 0 
z are equivalent iff there is a c>O such that w, = CW,. An equivalence class of 

volume elements on E is called an orientation on E. 
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We shall see shortly the close relationship between volume elements and 
determinants. 

2.3.9 Proposition. Let a,, . . . , cu, E E* . Then a,, . . . , ak are linearly dependent 
iff a,/,"' /,ak=O. 

ProoJ If a,, . . . ,ak are linearly dependent, then 

ai= CjCYj 
j#i 

for some i. Then, since a ~ a = O ,  we see a,,-,- /,a,=O. Conversely, if 
a,, . . .,ell, are linearly independent, extend to a basis a,, . . . , cu,. Then a,,-, . . A 
an + 0, by 2.3.7 and hence a,,-,. - - /,ak +O. . 
2.3.1 0 Propositlon. Let dim(E) = n and cp E L(E, E). Then there is a unique 
constant detq, cded  the determinant of QJ, such that cp*: Qn(E)+Qn(E), 
defined by cp*w(e,, . . . ,en) = w(q(e,), . . . , cp(en)) satisfies cp*o = (det cp)w for all 
w E an (E). 

ProoJ Clearly cp*: Qn(E)+Qn(E) is a linear mapping. But, from 2.3.7, 
Qn (E) is one-dimensional so that if wo is a basis and w = cwo, cp*w = ccp*wo= 
bw for some constant b, clearly unique. 

It is easy to see that this definition of determinant is the usual one 
(Exercise 2.3B.) However, it has the advantage of suggesting the proper global 
definition (Sect. 2.5), as well as making its basic properties trivial, as follows. 

2.3.1 1 Propositlon. Let QJ, 4 E L(E, E). Then 
( i )  det (cp d / )  = (det cp)(det +); 
(ii) if cp is the identity, det cp = 1 ; 
(iii) cp is an isomorphism iff det cp + 0, and in this case det (q - ') = (det cp) - '. 
ProoJ For (i), (cp0+)*w=det(q0+&, but (cpO+)*w=+*ocp*w as we see 
from the definitions as in 1.7.17. Hence, (cp 0 +)*w = +*(det cp)w = 
(det+)(detq)w and (i) follows. (ii) follows at once from the definition. For 
(iii), suppose cp is an isomorphism with inverse cp-I. Then, by (i) and (iii), 
1 = det (cp 0 cp - I )  = (det cp)(det cp - I), and, in particular, det cp ZO. Conversely, if 
cp is not an isomorphism there is an el +O so cp(e,)=O (Exercise 1.2B). Extend $ to a basis el, e,, . . . ,en. Then for all n-forms w, cp*w(e,, . . . ,en) = 9 

m w(0, cp(e,), . . . , cp(en)) = 0. Hence, det cp = 0. . IC) 

2 
d 

Recall from Chapter 1 that there is a unique vector space topology on 
L(E,E) since it is finite-dimensional. One convenient norm giving this 2 
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topology, which was used earlier in 1.7.7, is the following operator norm: 

where lie11 is a norm on E. (See Exercise 1.2A). Hence, for any e E E, 

IItp(e)ll 9 lltpll llell 

2.3.12 Proposition. det: L(E, E)+R is continuous. 

Proof: Note that 

is a norm on Qn(E) and Iw(e,, ..., en)l< llwll Ilelll..- Ilenll. Then, for q,+E 
L(E, E), 

Consequently, Idettp-det#l< lltp- $11 (11tp11 + II+II)"-' and the result follows. 

In 1.3.14 and 1.7.7 we saw that the isomorphisms are an open subset of 
3 L(E,F). Using the determinant, we can give a simpler proof in the finite- 

dimensional case. 
m 
3 
"P 2.3.1 3 Proposition. Suppose E and P are finite-dimensional and let GL(E, F) 
0 

denote those tp E L(E,F) that are isomorphisms. Then GL(E,F) is an open 
subset of L(E, F). 
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Proof. If GL(E,  F )  = 0 ,  the conclusion is true. If not, there is an isomor- 
phism I,L E GL(E,  F).  A map cp in L(E ,  F )  is an isomorphism if and only if 
I,L- 'QJ is also. This happens precisely when det(I,L-'cp) # 0. Therefore, GL(E, F )  
is the inverse image of R\{O) under the map taking cp to det(I,L-'cp). Since this) 
is continuous and R\{O) is open, GL(E,  F) is also open. . 

In order to define pull-back cp*t or push-forward cp,t of a general tensor t 
by a map cp, cp needs to be a diffeomorphism. For covariant tensors, however, 
pull-back makes sense if cp is merely a C' map. On the vector space level, this 
goes as follows. 

2.3.14 Deflnltlon. Let cp E L(E, F). For a E T:(Q define thepulI-back of a 
by cp; cp*a E T:(E) by cp*a(el, . . . , ek) = a(cp(e,), . . . , cp(ek)). I f  cp E 
GL(E, F), we denote by cp ,  the push-forward map defined in 1.7.3. 

2.3.15 Proposition. Let QJ E L(E, F), + E L(F G). Then 

( i )  cp* : TkO(F) + T:(E) is linear, and cp*(Qk(~)) c Qk(E); 
(ii) (+ocp)* = cp*o+*; 
(iii) If cp is the identity, so is cp*; 
(iv) I f  cp E GL(E, F), then cp* E GL(T:(F), T ~ ( E ) ) ,  (cp*)-' = (cp-I)* and 

cp*Qk(F) = Qk(E); 
(0) If cp E 0, then c p ,  E GL(T~(E) ,  T:(~F)), (cp-I)* = cp,, and 

(cp*)-' = (cp-ll*; i f+  E GL(F7 GI, (+ocp)* = +*ocp*; 
(vi) If a E Q k ( ~ ) ,  B E Q'(F), then cp*(a~P) = cp*ar\cp*f3. 

ProoJ: It is evident that (i) follows at once from the definition. For (ii), 

Then (iii) is clear and (iv) follows from (ii) and (iii). For (v), cp,B(f,, . . . ,&) 
= B(cp-'fi, . . . , c p - I f k )  = (9-')*JQ( f l ,  . . . ,&) and (cp,)-' = (cp-')*-I = cp* = 
(cp-')*. Finally, cp*(ar\P)(e,, . . . , ek+,) = ar\8(pel, . . . , cpek+,) = 
cp*ar\cp*B(e,, . . . , ek+,). I 

As in Sect. 1.7, we can consider the exterior algebra on the fibers of a 
vector bundle as follows. 5 2 

4 
2.3.1 6 Definition. Let cp : U X F+ U' X F' be a local vector bundle map that 
is an isomorphism on each fiber. Then define c p ,  : U X Qk (I;?+ U' X Qk (F') by 3 
(u, a) H ( ~ ( u ) ,  cpU*a), where cp, is the second factor of cp (an isomorphism for Z 
each u). w 8 
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2.3.1 7 Proposition. If cp : U X Ei U' x P' is a local vector bundle map that 
is an isomorphism on each fiber, then so is 9,. Moreover, i f  cp is a local vector 
bundle isomorphism, so is cp,. 

Proof. This is a special case of 1.7.9. . 
2.3.18 Definition. Suppose a :  E+B is a vector bundle. Define 

where A is a subset of B and Eb = a P 1 ( b )  is the fiber over b E B. Let 
o k ( E ) I ~ = u k ( E )  and define wk(a):  u ~ ( E ) + B  by cdk(v)(t)=bif t€ak(Eb).  

2.3.19 Theorem. Suppose { E  1 U,, cp,) is a vector bundle atlas of w, where cpi: 
E I U, + U,' X c. Then {o k ( ~ ) I  U,, cpi*) is a vector bundle atlas of wk(a): 
o k ( ~ ) +  B, where cpi*: o k ( ~ ) I  U ,  -+ Ui) X Q k ( q )  is defined by Eb = Eb), 
(as in 2.3.16). 

Proof: We must verify (VBA 1 )  and (VBA 2) of 1.5.2: (VBA 1) is clear; for 
(VBA 2) let c p , , ~  be two charts on a, so that cpi o cpil is a local vector bundle 
isomorphism. (We may assume UI.= q.) But then from 2.3.15, cpi. 9: = 
(cpi 0 cpj- l),, which is a local vector bundle isomorphism by 2.3.17. H 

Because of this theorem, the vector bundle structure of a: E+B induces 
naturally a vector bundle structure on wk(a): w k ( E ) + ~ ,  which is also 
Hausdorff, second countable, and of constant dimension. Hereafter wk(lrr) will 
denote this vector bundle. 

EXERCISES 
2.3A. If k!  is omitted in the definition of A (2.3.2), show that A fails to be 

associative. 
2.3B. Show that, in terms of components, our definition of the determinant is 

the usual one. 
2.3C. If a is a two-form and fl  is a one-form, show that 

( ~ A P ) ( ~ I ,  e2, e3) =&(el, e2)B(e3) -a(el, e3)B(ez)+a(ez, e3)P(e1) 
2.3D. Show that if el,. . .,en is a basis of E and a',. ..,a" is the dual basis, then 

( a l ~ -  - .  ~ d ) ( e ~ ,  ..., en)= I.  

8 2.4 CARTAN'S CALCULUS QF DIFFERENTIAL FORMS 
E 
4 We now specialize the exterior algebra of the preceding section to tangent 

bundles and develop a differential calculus that is special to this case. This is 
basic to the dual integral calculus of Sect. 2.6 and to the Hamiltonian 

2 mechanics of Chapter 3. 
3 
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If TM: TM+M is the tangent bundle of a manifold M, let u k ( M ) =  
a k ( ~ ~ ) ,  and w ~ = w ~ ( T , ) ,  SO a h :  uk(M)+M is the vector bundle of 
exterior k forms on the tangent spaces of M. Also, let OO(M)= F(M),  
O1(M)= T ( M ) ,  and Ok(M)=I'"(&),k=2,3,. . . . 
2.4.1 Proposition. Regarding % ( M )  as an F ( M )  module, Ok(M)  is an 
F ( M )  submodule. 

ProoJ: If t1,t2 €O k ( M )  and f E F(M) ,  we must show f @tl  + t ,  €Ok(M).  
From 1.7.19, we have f @tl  + t2 E ~ ( M ) .  But, by 2.3.1, f @tl(m)+ t,(m)E 
Ok(T, M )  and the result follows. . 
2.4.2 Proposition. If a €O k ( M )  and P €O1(M), k ,  I=0, 1 ,  . . . ,n, define aAP: 
M+a k ' l ( ~ )  by (ar\P)(m) = a(rn)AP (m). Then ar\@ €Ok+'(M), and A is 
bilinear and associative. 

ProoJ: First, A is bilinear and associative by 2.3.5. To show is of class 
C", consider the local representative of ~ A P  in natural charts. This is a map 
of the form (aAP),  = B (s x P,), with s, P,, C" and B= A, which is bilin- 
ear. Thus ( a ~ p ) ,  is C" by Leibniz' rule. II 

2.4.3 Definition. Let O(M) denote the direct sum of Ok ( M ) ,  k = 0, I , .  . . , n, 
together with its structure as an (infinite-dimensional) real vector space and with 
the multiplication A extended componentwise to Q(M). We call O(M)  the 
algebra of exterior d~zerential f o m  on M. Elements of Ok(M)  are called 
k-forms. In particular, elements of %*(M)  are called one-fom. 

Note that we generally regard O(M) as a real vector space rather than an 
F ( M )  module [as with S ( M ) ] .  The reason is that F ( M )  = OO(M) is included 
in the direct sum, and f ~ a  = f @ a  = fa. 

2.4.4 Notation. Let (U,cp) be a chart on a manifold M with U' = cp(U) c Rn. 
Let e, denote the standard basis of Rn and let g,(u) = T,(,)cp -'(cp(u), e,). Simi- 
larly let a' denote the dual basis of ei and gi(u) =(~,cp)*(cp(u),a'). [Thus, jor 
each u € U, g,(u) and ' (u )  are dual bases of the fiber T, M.] Then i f  cp(u) = 
(x l (u) ,  ..., x n ( u ) )€R n ,  we define 

at points u E U. X 
2 With these notations, we see dxi (u )  = g ' (u), for 4 m 
8 dxi ( U ) ( % ( U ) )  = p2TUxi ~,(~)cp-'(cp(u), ej) = p2TU ( x i  cp - ' ) (~ (u ) ,  ej) 3 
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Hence, 
af d f ( u ) = d f ( ~ ) ~ ' ( u ) =  -(u)dxi(u) 
ax 

Thus the components of the differential df are the partial derivatives af/axi. 
Also, for each t E 9'' ( U )  we have 

t(u)=til'..'."(u)4;.l@- / I "  JS - .  @ ~ , @ d x j l @ . . .  @dx& 

and for each w E Qk ( U) 

where 

and 

The extension of d to Q k ( ~ )  is given b y  the following. 

2.4.5 Theorem. Let M be a manifold. Then there is a unique family of 
mappings d k ( U ) :  Q k ( ~ ) + Q k + ' ( ~ )  (k  =O,1,2,. . . ,n, and U is open in M ) ,  
which we merely denote by 4 called the exterior derivative on M, such that 

( i )  d is a A antiderivation. That is, d is R linear and for a E Qk ( U) , 
P €Q'(U), 

(ii) I f f  E F( U ) ,  df = df (as defined in 2.2.1); 
(iii) dod=O (that is, d k + ' ( ~ ) o d k ( ~ ) = O ) ;  
(iv) d is natural with respect to restrictrctrons; that is, i f  U c V c M are open 

and a E Qk ( V ) ,  then d (a] U )  = (da)l U, or the following diagram com- 
mutes: 

z 
As in Sect. 2.2, condition (iv) means that d is a local operator. 
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Proof; We first establish uniqueness. Using (iv) it is sufficient to consider 
the local case w E Qk(U); U c M. By R linearity, it is sufficient to consider 
the case in which w has the form w = fO d f l ~  - . - ~ d f ~ ,  where € E(U). 
Hence, from (i), (ii), and (iii), dw = dfO~dflr - - . ~df ,  and thus, dw is 
uniquely determined. 

For existence we may again suppose w = fo d f l ~  - . . ~df, in some chart, 
and define dw = dfO~dfl,r\ . . . r\dfk, which is independent of the chart (ex- 
ercise). Then (ii) and (iv) are clear, as is R linearity. To prove (i), note that if 
p = go d g , ~  . . . ~dg, ,  then 

Finally, for (iii), it is clearly sufficient to verify d ~ d f  =0 for functions. But in 
a local chart df (u) = Df(u).eidxi so that 

by symmetry of the mixed partial derivatives. 

2.4.6 Corollary. Let w €Qk (U) , where U c E (open). Then 

where 4 denotes that ei is deleted. Also, we denote elements (u, e) of TU mere@ 
by e, for breuity. [Note that ~w(u) .e  E L ~ ( E ,  R).] 

ProoJ First note that d defined this way is a map Qk(U)+Qk+'(U). Then it 
is sufficient to verify (i)-(iv) of 2.4.5. But R linearity, (ii), and (iv) are clear, 
and as A is bilinear, D (w~p) = w~ Dp + Dw~p,  from which (i) readily follows. 
Finally, (iii) follows as in 2.4.5. . Y 

9 2.4.7 Definition. Suppose F: M+N is a Cm mapping of manifolds: For 
w€s l k ( ~ ) ,  define F*w: M + ~ ~ ( M )  by F*w(m)=(T,F)*owo F(m) (see g 
2.3.14). We say FCw is thepull-back of w by F. g 

z 
Especially, note if g E Q O ( ~ ) ,  F*g = g 0 F. f! 
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2.4.8 Proposition. Let F: M+N and G: N+ W be C m  mappings of mani- 
folds. Then 

( i )  F* : O k ( N ) + O k ( ~ ) ;  
(ii) ( G  0 F)* = F* G*; 
(iii) if H :  M+M is the identity, then H* : Ok ( M ) + O ~ ( M )  is the identity; 
(iv) if F is a diffeomolphism, then F* is a vector bundle isomolphism and 

(F*) - I=(F-~)* .  

Proof: Choose charts (U ,  cp) ,  ( V ,  +) of M and N so that F(U) c V ,  then 
F& = + o ~ o c p - l  is of class C m ,  as is wJ, = ( T I C / ) , O ~ O + - ' .  Then 

Hence the local representative of F*w is 

which is of class C" by the composite mapping theorem; R linearity is clear. 
For (ii), we merely note that it holds for the local representatives by 

2.3.15; (iii) follows at once from the definition; and (iv) follows in the usual 
way from (ii) and (iii) 

As F*: Ok(N)+Ok(M) is R linear, it induces a mapping on the direct 
sums, F* : O(N)+O(M), which are differential algebras with A and d. 

2.4.9 Theorem. Let F: M+N be of class C ". Then F* : O(N)+O(M) is a 
homomolphism of differential algebras; that is, 

(i) F * ( + A ~ )  = F * + A F * ~  and 
(ii) d is natural with respect to mappings; that is, F*(dw) = d(F*w), or the 

following diagram commutes: 
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Proof: We first consider F* ($A~)  when $ is a function. Then 

or I;*($/\@)= F*$/\F*w, as F * $ = $ o  F if $€O0(N). Then (i) follows im- 
mediately from 2.3.15(vi). For (ii) we shall show in fact that if m EM, there is 
a neighborhood U of m E M such that d(F*ol U)= (F*dw)l U, which is 
sufficient, as F*  and d are both natural with respect to restriction. Let (V,/,cp) 
be a local chart at F(m) and U a neighborhood of m E M with F(U) c V. 
Then for w E Ok( V), we can write 

w=wil...,dxilr\. - .  /\dxik 

dw = aiowi, .. ., d x i 0 ~  . a ,,d~ik) a,=- 
ax i~ 

and by (i) above 

F*wJ u=(F*~;,  ...,) F*dx i l~ .  - . ~ F * d x k  

But if $ E OO(N), d ( F  *$) = F* d$~ by the composite mapping theorem, so 

d(F*wl u)=  F * ( ~ ~ ~ . . . , ) A F * ~ X ' ~ A . .  . ~ F * d x k  

= F*(dw)l U 

by (i) above. II 

2.4.10 Corollary. The operator d is natural with respect to diffeomorphisms. 
That is, if F: M-N is a diffeomciphism, then F,dw= dF*y or the following 
diagram commutes: 

F* 
ilk (M) - Ok (N) 

Y 
O k + I ( ~ )  -+ Ok+'(N) E 

F* 9 CC) 

8 z Proof: With F* defined as F* = (F)!, we see that F, = ( F  - I)*. The result z 
then follows from 2.4.9(ii). E! 



The next few propositions give some important relations between the Lie 
derivative and the exterior derivative. 

2.4.11 Theorem. Let X E %(M).  Then d is natural with respect to Lx. That 
is, for o €Q k ( M )  we have Lxw E Q k ( M )  and dLxw = Lxdw, or the following 
diagram commutes : 

ProoJ: If a ' , . . . , a k ~ Q 1 ( M )  wehave 

This follows from the fact that Lx is R linear and is a tensor derivation. Since 
locally € Qk ( M )  is a linear combination of such products, it readily follows 
that Lxw €Qk(M) .  For the second part, let (U,a, F )  be a flow box at m E M, 
so that from 2.2.20, 

But from 2.4.10 we have F,* d o  = d(F;fw). Then, since d is R linear, it 
commutes with d /dh  and so dL,w = L, dw. I 

The foregoing proof can also be carried out in terms of local representa- 
tives. 

2.4.12 Definition. Let M be a manifold, X E %(M),  and w E Qk+'(M). Then 
define ixw E % ( M )  by 

If w E QO(M), we put ixw = 0. We call i,w the inner product of X and w. 

2.4.13 Theorem. We have ix: Qk(M)+Qk-'(M), k =  1,. . .,n, and, for a E 
Qk ( M ) ,  ,8 E Q'(M), f E Q O ( ~ ) ,  

( i )  ix is a A antiderivation. That is, ix is R linear and 2 
9 - i x ( a ~ P )  = ( i x a ) ~ P  + (- l ) k a ~ ( i X P ) ;  

(ii) ifla=$xcy 
(iii) ixdf = L x j  

z (iv) Lxa = ix da + dixcy m 
(0) Lf la=fLxa+df~ixa .  
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hvloj That ixa E Qk-'(M) follows at once from 2.2.8. For (i), R linearity is 
clear. For the second part of (i) 

and 
( k + l -  l)! 

ixaA P + (- l )ka~ixf l  = (k - l)!l! A(ixa @ P)  

But the slum over all permutations in the last term can be replaced by the sum 
over oo,, where o, is the permutation (2, 3, . . . , k + 1, 1, k + 2, . . . , k + l)t+ 
(1, 2, 3, . . . , k + I) whose sign is (- Hence (i) follows. For (ii), we merely 
note ax is linear, and (iii) is just the definition of Lxf. 

For (iv) we proceed by induction on k. First note that for k = 0, (iv) 
reduces to (iii). Now assume that (iv) holds for k. Then a k + 1 form may be 
written as 2d4/\wi, where wi is a k form, in some neighborhood of m E M. 
But Lx(df ~ w )  = Lx df + df A Lxw and 

by our inductive assumption and (iii). Since dL,f = Lxdf, the result follows. 
Finally for (v) we have 

The behavior of inner products under diffeomorphisms is given by the 
following. 

2.4.14 Proposition. Let M and N be rnanifoldr and f: M+N a diffeomor- 
phism. Then, if w E Qk ( N )  and X E % ( N ) ,  we have 
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that is, inner products are natural with respect to diffeomophisms; that is, the 
following diagram commutes: 

f* Q k ( N )  -------t Q k ( M )  

Similarly for Y E % ( M )  we have the following commutative diagram: 

Proof: Let v ,  ,..., vk-,ET,(M) andn=f(m) .  Then by2.4.12 and2.4.7 
&*Xf * u ( ~ ) '  (01,. . , 0,- 1) 

= ixo(n). (Tfv,, . . . , Tfvk- 

The nexi pi~position expresses d in t ern  of the Lie derivative (Palais 
[1963]). 

2.4.15 Proposition. Let X;: E %(M) ,  i = 0, . . . , k ,  and w E @(M).  Then we 
have 
( i )  (Lx,,w)(Xl, . . . , Xk) = Lx&4Xl ,  . . . , Xk)) 

f3 (ii)  do(^, x,, . . . , x,) = x (- I)'L~J~(x,,, . . . , $, . . . , x k ) )  
9 i = O  P + 2 (- l ) ' + j w ( ~ ~ ( q . ) ,  xo, . . . , Ti, . . . , 4, . . . , Xk) d O< i<j< k z a where denotes that Xi is deleted. 
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ProuJ Part (i) is exactly condition (DO 4) following 2.2.17. For (ii) we 
proceed by induction. For k = 0, it is merely dw(Xo) = Lxow. Assume the 
formula for k - 1. Then if w E Slk(M), we have, by 2.4.13(iv), 

But ixow E 6 k - 1 ( ~ )  and we may apply the induction assumption. This gives, 
after a simple. permutation and 2.4.12, 

Substituting this into the above easily yields the result. . 
2.4.16 Definltlon. We call w €!dk(M) closed if dw =0, and exact if there is 
an a E Qk - '(M) such that w = da. 

2.4.17 Theorem. (i) Euery exact form is closed. 
(ii) (Poimark lemma). If w is closed then for each m EM, there is a 

neighborhood U of m for which wJ U €Qk(U) is exact. 

Proof: Part (i) is clear since dod=O. Using a local chart and 2.4.9(ii) 
together with 2.4.5(iv), it is sufficient to consider the case w EQk(U), U c E a 
disk about O E  E, to prove (ii). On U we construct an R linear mapping H: 
! d k ( ~ ) + Q k - ' ( ~ )  such that d 0 H +  Hod is the identity on Qk(U). This will 5 
give the result, for dw = O  implies d (Hw) = w. !2 

4 For el, ..., ek EE define m 
2 
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Then, by 2.4.6, 

(The interchange of D and is permissible, as w is smooth and bounded over I 
t E[O, 11.) However, we also have, by 2.4.6, 

Hence 

which proves the assertion. . 
x There is another proof of the PoincarC lemma that is useful to understand. 

This proof will help the reader master the proof of Darboux' theorem in Sect. 4 - 3.2, and is similar in spirit to the proof of Frobenius' theorem (2.2.26). B 
d 
z Alternative Proof of the Poincare Lemma We again let U be a ball about 0 

in E. Let, for t>O, F,(u)=tu. Thus I;, is a diffeomorphism and, starting at 
C1 
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t = 1, is generated by the time-dependent vector field 

Xt(u)=u/t 

that is, Fl(u) = u and dl;, (u)/dt = X, (E;,(u)). Therefore, since w is closed, 

For O <  to< I ,  we get 

Letting to+O, we get w =  dp, where 

Explicitly, 

(Note that this p agrees with that in the previous proof.) . 
See Exercise 2.4E for a relative BoincarC lemma. 
It is not true that closed forms are always exact (for example, on a 

sphere). In fact, the quotient groups of closed forms by exact forms (called 
the de Rham cohomology groups of M) shed light on the manifold topology. 
A discussion may be found in Flanders [1963], Singer and Thorpe [1967], and 
in de Rham [1955]. 

In differential geometry the use of vector valued forms is important; that 
is, one replaces multilinear maps into R by multilinear maps into a vector X g space V. One can utilize the exterior calculus by taking the components of the 
form. For applications to geometry, see Kobayashi-Nomizu [1963], Chern 
[1972], or Spivak [1974]. g 

The following table summarizes some of the important algebraic identities 2 
involving differential forms that have been obtained. CI !2 



Table 2.4-1 

1. Vector fields on M with the bracket [X,  Y] form a Lie algebra; that is, [X,  Y ]  is real bilinear, 
skew symmetric, and Jacobi's identity holds: 

2. Foradiffeomorphismf,f,[X,Y]=[f*X,f+Y]and(fog),X=f,g,X. 
3. The forms on a manifold are a real associative algebra with A as multiplication. Further- 

more, ar\P =(- 1)~9r \a  for k and I forms a and /3, respectively. 
4. I f f  is a map, f * ( a ~ P ) =  f *anf*P, ( f  og)*a=g*f*a. 
5. d is a real linear map on forms and: 

dda =0, d(aAP)= d a ~ ~ + ( -  1 ) ~ a ~ d / 3  for a a k-form. 
6. For a a k-form and Xo, . . . , Xk vector fields: 

7. For a map f, f*da=df*a. 
8. (Poincark lemma) If da=O, then a is locally exact; that is, there is a neighborhood U 

about each point on which a = dB. 
9. ixa is a real bilinear in X, a and for h : M+ R, ihXa = hixa = ixhcw. Also ixixa = 0, and 

10. For a diffeomorphism f, f*ixa=ifeXf*a. 
1 1. Lxa = &a + ixda. 
12. LXa is real bilinear in X,a and LX(ar\P)= LxaAP+ ~ A L ~ P .  
13. Foradiffeomorphismf, f*LXa=Lf.,f*a. 
14. (L,~)(X,, . . . , xk )=x( f f (x1 , .  . .,xk))-Ef= l ~ ( x l , .  . .,[x,xi], 0 .  .,xk). 
15. Locally, 

16. The following identities hold: 
LfXa =f lxa  + dfr\ixa 

EXERCISES 

2.4A. On S1 find a closed one-form a that is not exact. What are the cohomology 
groups of S '? 

X 2.4B. Show that the following properties uniquely characterize i,: 
$ (i) ix: S2k(~)+Slk-1(~)  is a A antiderivation; 
4 (ii) ix f = 0; f E %(MI; 
8 (iii) i,w=w(X) for w EP'(M); 
g (iv) ix is natural with respect to restrictions. 
i2 Hence show ilx, = LXiy - iYLX. Finally, show ix 0 ix =O. 
g 2.4C. If w E S ~ ~ ( M ) ,  and if, for some f ?! B(M),f (m)#O for all m E M and f w  is 
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exact, there is a 0 €Q1(U) with do = 0 ~ w  and d o ~ o  =0. Interpret as a 
necessary condition for integrability of a total differential equation. Such a 
function f is an integrating factor of o. For a partial converse, see Flanders 
[1963, p. 941. 

2.4D. Let s: T'M+T'M be the canonical involution of the second tangent bundle 
(see Exercise 1.6D). 
(i) If X is a vector field on M, show that s 0 TX is a vector field on TM. 
(ii) If 4 is the flow of X, T 4  is a flow on TM generated by s 0 TX. 
(iii) If p is a one form on M, fi: TM+R the corresponding function, and 

w E T 2 ~ ,  then show that 
df i (sw)=d~( . r~~(w) ,  T%(w))+dfi(w) 

2.4E. Prove the following relative Poincark lemma: Let o be a closed k-form on a 
manifold M and let N c M be a closed submanifold. Assume that the pull- 
back of o to N is zero. Then there is a (k - 1)-form a on a neighborhood of N 
such that da=o and a vanishes on N. If o vanishes on N, then a can be 
chosen so that all its first partial derivatives vanish on N. (Hint: Let cp, be a 
homotopy of a neighborhood of N to N and construct an H operator as in the 
Poincark lemma using cp,.) 

2.4F. (Angular Variables). Let S1 denote the circle, S1mR/(2.rr)m{z E CI IzI = 1). 
Let y: R+S1: xweix,  be the exponential map. Show that y induces an 
isomorphism TS 'mS x R. Let M be a manifold and let u be an "angular 
variable," that is, a smooth map w: M+S1. Define do, a one form on M by 
taking the R-projection of To. Show that (i) if o: M+S ', then d20= 0; and 
(ii) i f f :  M+N is smooth, then f *(do) = d ( f  *a), where f *a = o 0 f. 

2.5 ORIENTABLE MANIFOLDS 

The purpose of this section is to globalize the definitions of orientation 
and determinant discussed in Sect. 2.3. This leads naturally to the definition 
of the divergence of a vector field. First, we discuss partitions of unity, which 
are used in some proofs of this section, and which are essential for the 
definition of the integral (Sect. 2.6). \ 

2.5.1 Definitions. If t is a tensorfield on a manifold M, the support o f t  is the 
closure of the set of m E M  for which t(m)ZO, and is denoted supp t. Also, we 
say t has compact support if supp t is compact in M. 

A collection of subsets {C,) of a manifod M (or, more generally, a 
topological space) is called locally finite if for each m E M  there is a neighbor- 
hood U of m such that U n Ca = 0 except for finitely many indices a. 

2.5.2 Definition. A partition of unity on a manifod M is a collection 
{( U,., gi) > , where Y 

f! - - 
( i )  {(U,)) is a locally finite open covering of M; 4 rn 

(ii) gi E %(M),  gi (m)  2 0 for all m E M, gi has compact support, and supp gi C 8 
U, for all i; 3 

(iii) For each m E M, 2 igi(m) = 1. g 
M 
c;l 

[By ( i ) ,  this is a finite sum.] 
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If is an atlas on M,  a partition of unity subordinate to &? is partition of 
unity {(U,,gi)) such that each open set U, is a restriction of a chart of & to an 
open subset of its domain. 

2.5.3 Theorem. If & is an atlas of M, there is apartition of unity subordinate 
to a. 
PmoJ The proof of 1.1.21 shows the following. Let M be an n manifold and 
{ W,) be an open covering. Then there is a locally finite refinement consisting 
of charts {v,+i) such that is the disk of radius 3, and such that 
+~-'(D,(o)) cover M, where D,(O) is the unit disk, centered at the origin in the 
model space. Now let & be an atlas on M and let { V,,+i) be a locally finite 
refinement with these properties. From 2.2.7 there is a nonzero function 
hi E F(M) whose support lies in and hj > 0. Let 

(the sum is finite). These are the required functions. . 
Proof of the parenthetical statement in 2.2.7. More generally, we prove a 
smooth version of Urysohn's lemma (1.1.23). Let A and B be two closed sets. 
Since manifolds are normal (see 1.1.21, and 1.1.22), there is an atlas {U,, 
such that U, n A # 0  implies U,n B =O. Let { y ,  g,} be a subordinate 
partition of unity and h = Zg,, where the sum is over those i for which 
KnA#Zm.Then hisoneon Aandzeroon B. 

2.5.4 Definition. A volume on an n-manifsd M is an n-form 9 €Pn(M) such 
that G(m)#O for all m E M; M is called orientable if there is a volume on M. 

Thus, 9 assigns an orientation, as defined in 2.3.8, to each fiber of TM. 

2.5.5 Theorem. Let M be a connected n-manifold Then ( i )  M is orientable iff 
9" ( M ) ,  regarded as am F(M) module, is one-dimmiomal (has one generator); 

(ii) M is orientable iff M has an atlas {(U,, w)) , where cp, : U,+ U,' c R", 
such that the Jacobian determinant of the overlap maps is positive (the Jacobian 
determinant being the determinant of the derivative, a linear map from R" into 
R"). 

ProoJ For (i) assume first that M is orientable, with a volume 9. Let 9' be 
any other element of Gn(M). Now each fiber of Bn(M) is one-dimensional, so 
we may define a map 5 M+ R by 

vl 
8 
OQ Q'(m) = f(m)Q(m> 
0 

We must show that f E F(M). In local representation, 
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and Q(m) = w(m) dxilr\ - - . r\dxc(m). But w(m) # 0 for all m E M. Hence 
f(m) = wt(m)/w(m) is of class Cm. Conversely, if Qn(M) is generated by $2, 
then Q(m) # 0 for all m E M since each fiber is one-dimensional. 

To prove (ii), let {(U,,cp,)) be an atlas with U,'n Rn. Also, we may assume 
that all Q' are connected by taking restrictions if necessary. Now cpi,!2 =Jdxl 
A .  - . r\dxn =A$20, where Q0 is the standard volume element on Rn. By means 
of a reflection if necessary, we may assume that J(uf) > 0 (AZO since $2 is a 
volume). However, a continuous real valued function on a connected space 
which is not zero is always > O  or always <O. Hence, for overlap maps we 
have 

But, 

+*(u)(a1r\. - .  A d ) =  &(u)* -al,,&(u)*.CyZr\. . . A & ( u ) * ' ~  

where D$(u)* - al(e) = al(D+(u) ee). Hence, by definition of determinant we 
have 

det (D (qj 0 ')(u)) = 
A(.) > o  

fi[% ocpi-'(u)] 

We leave as an exercise for the reader that the canonical isomorphism 
L(E; E)w L(E*; E*), used above, does not affect determinants. 

For the converse of (ii), let ((Va,+a)) be an atlas with the given property, 
and {(U,,cpi,g,)) a subordinate partition of unity. Let 

and let 

Since suppg, c U,, $ ESIn(M). Then let 

d 
Since this sum is finite in some neighborhood of each point, it is clear from 
local representatives that $2~!2"(M) .  Finally, as the overlap maps have 
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positive Jacobian determinant, then on U;: n U,, Qi # 0 and 

= [det ~((pioq; ' )~q~]q;(dx~~ . . - A&") 

Since Zj:igj = 1, it is clear then that Q(m)#O for each m E M. 

Thus, if M is an orientable manifold, with volume Q, 2.5.5(i) defines a 
map from 52" (M) into F(M); namely, for each 9' €Qn(M), there is a unique 
f E F(M) such that Q' =fa. 

2.5.6 Definition. Let M be an orientable manifold. Two volumes 52, and 9, on 
M are called equivalent $f there is an f E %(M) with f (m)  > 0 for all m E M  
such that Q1 =fa,. (This is clearly an equivalence relation.) An orientation of M 
is an equivalence class [Q] of volumes on M. An oriented mmuyoold, (M, [Q]), is 
an orientable manifold M together with an orientation [Q] on M. 

If [Q] is an orientation of M, then [ - Q] (which is clearly another orientation) 
is called the reverse orientation. 

The next proposition tells us when [Q] and [-Q] are the only two 
orientations. 

2.5.7 Proposition. k t  M be an orientable manifold. Then M is connected iff 
M has exactly two orientations. 

Proof: Suppose M is connected, and Q, Q' are two volumes with Q' = f 0. 
Since M is connected, and f (m)#O for all m E M, f (m)>O for all m or else 
f (m) < 0 for all m. Thus 3' is equivalent to Q or -Q. Conversely, if M is not 
connected, let U# [a or M be a subset that is both open and closed. If D is a 
volume on My define Q' by 

2 
Obviously Q' is a volume on M y  and Q' $ [Q] u [- 81. . 

3 
00 
0 

i3 A simple example of a nonorientable manifold is the Mobius band (see 
Fig. 2.5-1 



126 1 PRELIMINARIES 

2.5.8 Proposition. The equivalence relation in 2.5.6 is natural with respect to 
mappings and diffeomophisms. That is, i f f :  M-+N is of class C*, SIN and CN 
are equivalent volumes on N, and f *(aN) is a volume on M, then f *(CN) is an 
equivalent volume. I f f  is a diffeomophism and a,  and CM are equivalent 
volumes on M, then f,(LnM) and f,(!2h) are equivalent volumes on N. 

h o J :  This follows easily from the fact that 

which implies 

when f is a diffeomorphism. I1I 

2.5.9 Definition. Let M be an orientable manifold with orientation [a]. A 
chart (U, q )  with cp(U)= U'C Rn is called positive& oriented iff q ,  (Q(U)  is 
equivalent to the standard volume 

From 2.5.8 we see that the above definition does not depend on the choice 
of the representative from [a]. 

If M is orientable, we can find an atlas in which every chart has positive 
orientation by choosing an atlas of connected charts and, if a chart has Y 

2 negative orientation, by composing it with a reflection. Thus, in 2.5.5(ii), the 4 
atlas consists of positively oriented charts. t-n 

3 
0 

2.5.10 Definition. Let V be a submanifold of an n-manifold M. We say V has Z 
codimemion k i f f  V; considered as a manifold, has dimension n - k. 3 
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Now since a curve in V is also a curve in M, we can say To V c TOM, and 
it is clear from Sect. 1.6 that the submanifold V has codimension k iff T,V 
has dimension n - k for each v E V iff for each v E V there is a vector space 
W, of dimension k so that TOM= T, V (3 W, (direct sum). 

2.5.11 Proposltion. Suppose M is an orientable n-manifold and V is a 
submanifold of codimension k with trivial normal bundle. That is, there are C "" 
maps N, : V+ TM, i = 1,. . . , k such that N,(v) E T,(M), and N,(v) span a 
subspace W, such that T, M = T, V (3 W, for all v E I/. Then V is orientable. 

Pmoj: Let 52 be a volume on M. Form 521 V: V+Qn(M). Let us first note 
that 521 V is a smooth mapping of manifolds. (lks was obvious earlier when 
we considered open submanifolds.) This follows at once by using charts with 
the submanifold property, where the local representative is a restriction to a 
subspace. Now define 52,: ~ + 5 2 " - ~  (V) as follows: for 

(analogous to an inner product; however 4 are not vector fields on M). It is 
clear that 52,(v)#O for all v. It remains only to show that 52, is smooth, but 
this follows from the fact that 521 V is smooth. W 

For some of the following proofs it will be convenient to use a 
Riemannian metric. 

2.5.62 Definition. A R i e m e n  mtric on a manifold M is a tensor g E  
T;(M) such that for all m E M, g(m) is symmetric and positive-definite. 

2.5.13 Proposition. On any manifold there exists a Riemannian metric. 

ProoJ Let {(c.,cpi, hi)) be a partition of unity on M, with U,'= cpj(U,) cRn.  If 
Hi is the standard Riemannian metric on q!, 

Hi (u)(v,w) = 2 v'w' 

x let g, E q ( m )  be defined by 

zi Then g = C ,g, is a Riemannian metric on M. 
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Recall that we include second countable in our definition of a manifold. It 
is interesting that a manifold which admits a Riemannian metric (or a 
connection) must be second countable (see Abraham [1963]). 

Note that if ~ E % ( M ) ,  we may identify g with an T linear mapping 
gb E L(%, X*)  and if g is a Riemannian metric, obviously gb is an isomor- 
phism. In this case we write g# =(gb)-', and the maps g# and gb are called 
raising and lowering indices, respectively. 

2.5.14 Definition. Let M be a manifold with a Riemannian metric g. For 
j € T ( M ) ,  gradj- g# (d f )  is called the gradient o f f .  Thus, gradf E %(M).  In 
local coordinates, if gu =g(ei,q) and gu is the inverse matrix, then one checks 
that 

The above machinery allows us to obtain the following consequence of 
2.5.11. 

2.5.15 Theorem. Suppose M is an orientable manifold, H E 4 ( M )  and c E R 
is a regular value of H. Then V= H -'(c) is an orientable submanifold of M of 
codimension one, if it is nonempg. 

Proof. Suppose c is regular value of H and H-'(c)  = V# +. Then V is a 
submanifold of codimension one. Let g be a Riemannian metric on M and 
N = grad(H)l V. Then N(u)  @ T,V for u E V, because T,V is the kernel of 
dH(u),  and dH(v)[N(u)] = g(N, N) (u )  > 0 as dH(u) # 0 by hypothesis. Then 
2.5.11 applies, and so V is orientable. . 

Thus if we interpret V as the "energy surface," we see that it is an oriented 
submanifold for "almost all" energy values (Sard's theorem). 

Let us now examine the effect of volumes under maps more closely. 

2.5.16 Definition. Let M and N be two orientable n-manifolds with volumes 
0, and 0 ,  respectively. Then we call a C" map f: M+N voIume preserving 
(with respect to a, and a,) i f f  *a ,  = a,, and we call j ortentation preserving 
i f f  *(a,) €[a,], and orientation reversing if j*(a,) E[-a,]. 

From 2.5.8, [ f * a N ]  depends only on [a,]. Thus the first part of the 
definition depends explicitly on a, and a, while the last two parts depend 
only on the orientations [a,] and [a,]. Furthermore, we see from 2.5.8 that if 
f is volume preserving with respect to a,, a,, then f is volume preserving 
with respect to ha,, gS2, iff h=gof.  It is also clear that if f is volume 2 
preserving with respect to a,, a,, then f is orientation preserving with respect 
to [a,], [a,]. E G 
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2.5.17 Proposition. Let M and N be n-manifold with volumes Q, and Q,, 
respectively. Suppose f: M+ N is of class Cm. Then (i)f+(Q,) is a volume iff f 
is a local diffeomorphism; that is, for each m E M, there is a neighborhood V of 
m such that f 1 V: V+ f (V)  is a diffeomophism. (ii) If M is connected, then f is 
a local diffeomorphism iff f is orientation preserving or orientation reversing. 

Proof. Iff is a local diffeomorphism, then clearly f *(QN)(m)#O, by 2.4.9(ii). 
Conversely, i f f  *(aN)  is a volume, then the determinant of the derivative of 
the local representative is not zero, and hence the derivative is an isomor- 
phism. The result then follows by the inverse function theorem. (ii) follows at 
once from (i) and 2.5.7. W 

Next we consider the global analog of the determinant. 

2.5.18 Definition. Suppose M and N are orientable n-manifold with volumes 
Q ,  and Q,, respectively. I f f :  M+N is of class Cw, the unique C w  function 
det(QM, f E 9(M) such that f *a ,  = (de&, ,N f )QM is called the detemtnant 
o f f  (with respect to 8, and a,). I f f :  M+M, we write det,J= det(,M,,Mf. 

The basic properties of determinants given in Sect. 2.3 also hold in the 
global case, as follows. 

2.5.19 Proposition. In the notation of 2.5.18, f is a local diffeomorpkism 
iffdet(,M, ,Nf (m)# 0 for all m E M. 

This follows at once from 2.5.17. 

2.5.20 Proposition. Let M be an orientable manifold with volume Q. Then 

( i )  if f :  M+M, g :  M + M  are of class Cw, then det,(fog)= 
rcdet,n ~glrdet,gl; 

(ii) if h : M+M is the identity, then det, h = 1; 
(iii) i f f :  M+M is a diffeomorphism, then 

Proof. For (i), 

Y = g*(det,, f)Q = ( ( d e t d )  og) g*Q 

2 
9 rn 

= ( ( d e t J )  og)(detag>Q 
13 

Part (ii) follows since, by 2.4.8 (iii), h* is the identity. For (iii) we have 
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I f f :  U c E+E, then det f is the Jacobian determinant o f f  [that reduces to 
the determinant o f f  i f f  is linear since Df(u)= f i f f  is linear]. Then in this 
case, (i) above is the usual "chain rule" for Jacobian determinants. (See the 
proof o f  2.5.5.) 

2.5.21 Proposition. Let ( M ,  [a,]) and ( N ,  [Q,]) be oriented manifolds and f: 
M+ N be of class C ". Then f is orientation preserving iff detcnM, ,,f(m) > 0 for 
all m E M,  and orientation reversing iff det(,M,,nf(m) < 0 for all m E M .  Also, f 
is volume preserving with respect to Q,, Q, iff det(,M,,Nf = 1. 

This proposition follows at once from the definitions. Note that the first 
two assertions depend only on the orientations [a,] and [a,] since 

which the reader can easily check. Here g~ %(N), h E %(M), g(n)#O, and 
h(m)#O for all n E N ,  m E M. 

Suppose that X is a vector field on Rn and Q0=dx'r\. . . r\dxn is the 
standard volume on Rn. Then LxQo=L,dx'Adx2~- . - r\dxn + . - . + dx' 
A. . . r\LX dxn (since Lx is a derivation). But Lx dxi = dLx x i  and Lxx i  = 
dx ' ( X )  = Xi, the components of  X. Hence 

axi axi Lxdxi=dXi=(- XI axj and L ~ ~ = ( , ) ~  

since dx 'r\dx ' = 0. That is, Lx $2, = (div X)Qo where div X is the usual diver- 
gence o f  a vector field on Rn. The generalization o f  this is as follows. 

2.5.22 Definition. Let M be an orientable manifold with volume a, and X a 
vector field on M. Then the unique function div,X E ~ ( M ) ,  such that LXa= 
(div,X)Q is called the divergence of X. We say X is incompressibble (with 
respect to Q) ifl diva X = 0. 

2.5.23 Proposition. Let M be an orientable manifold with volume Q, and X a 
vector field on M. Then: 
( i )  i f f E 9 ( M ) a n d f ( m ) # O f o r a I l m E M ,  then 

(ii) for g E %(M),  div,gX = g div, X + Lxg. 

ProoJ Since Lx is a derivation, we have 
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As f D is a volume, (diuf, X)( f D) = (L, f )Q + f (div,X)Q. Then (i) fol- 
lows. For (ii), we have, by 2.4.13, L,,Q = gL,D + dg A i,Q. Now from the 
antiderivation property of i,, dg A i,D = - i,(dg A Q)+ i, dg A Q. But dg A 
D E D"+'(M), and hence dg A D = 0. Also, i, dg = L,g and so L,,D = gL,D 
+(L,g)D. The result follows at once from this. 

2.5.24 Proposition. Let M be a manifold with volume D and X a vector field 
on M. Then X is incompressible (with respect to D) iff every flow box of X is 
volume preserving; that is, for the diffeomorphism FA : U+ V,  FA is volume 
preserving with respect to S2I U and Dl V. 

ProoJ: If X is incompressible, LxS2 = 0, D is constant along integral curves of 
X; S2(m)=(FA)*D(m). Hence FA is volume preserving. Conversely, if 
(FA)*Q(m) = Q(m), then LxQ = 0. H 

2.5.25 Corollary. Let M be an orientable manifold with volume $2, and X a 
complete vector field with flow F on M. Then X is incompressible iff detn FA = 1 
for all X E R. 

EXERCISES 
2.5A. Let f: Rn+ R" be a diffeomorphism with positive Jacobian and f(0) = 0. 

Prove that there is a continuous curve f, of diffeomorphisms joining f to 
the identity. [Hint: first join f to Df(0) by g,(x) = f(tx)/t.] 

2.5B. If t is a tensor density of M, that is, t = t' €3 y, where y is a volume, show 
that 

Lxt = (LXtt) €3 y + (divp X)t €3 y 

2.5C. (T. Hughes) A map A : E+E is said to be derived from a variational principle 
if there is a function L: E+R such that 

dL ( x ) ~  = (A (x) , u) 

where (,) is an inner product on E. Prove Vainberg's theorem: A comes from a 
variational principle if and only if DA (x) is a symmetric linear operator. Do this 
by applying the Poincarb lemma to the one form a(x) .v = (A (x), v). 

2.6 INTEGRATION ON MANIFOLDS 

The aim of this section is to define the integral of an n-form on an 
n-manifold M. We begin with a summary of the basic results on Rn. 

Suppose f: Rn+R is continuous and has compact support. Then 
f dx ' - . . dx " is defined as the Riemann integral over any rectangle contain- 

ing the support off (see Marsden [1974a, Chapter 91). 
F. 

2.6.1 Daflnltlon. Let U c R n  be open and o e W ( U )  have compact support. 
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If, relative to the standard basis of R", 

where 

wi ,... , ( u )  = w(u)(eil, . . . ,ein) 

we define 

Clearly, if we regard w E !2" (R "), the integral is unchanged. 
The change of variables rule takes the following form. 

2.6.2 Theorem. Let U, V be open subsets of R n  and suppose f: U+ V is an 
orientation preserving diffeomorphism. Then if w E an ( V) has cornpact support, 
f *w E f in  ( U )  has compact support and f *w = lo, that is, the following diagram 
commutes: 

Proof. If w = o dxl A - . .  A dxn, then f*w = (w ,...,, 0 f )(detQ,f) f io,  
where &I, = dxl A . . - A dxn is the standard volume on Rn. Since f is a 
diffeomorphism, the support of f * o is compact. Then 

As was discussed in Sect. 2.5, detQo f >0 is the Jacobian determinant of f .  
Now by covering the support of w by a finite number of disks, we see that the 
usual change of variables formula applies in this case (Marsden [1974a, 
Chapter 9]), namely, Y s 

J 4 
Iwl . . . ndx l - - .dxn= (wl...nof)(det~)dxl~~~dx" cn 3 

2 
which implies 1 f *w = l w .  . 8 

E? 
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Suppose that (U,cp) is a chart on a manifold M, and o E Q n ( M ) .  Then if 
supp w c U,  we may form wl U,  which has the same support. Then cp,(w) U) has 
compact support, and we may state the following. 

2.6.3 Definition. Let M be an orientable n-manifold with orientation Q. 
Suppose w E Qn ( M )  has compact support C c U, where (U, cp) is a positively 
oriented chart. Then we define hq)w = / cp,(ol U) .  

2.6.4 Proposition. Suppose w E Qn ( M )  has compact support C c U n V,  
where (U, cp), ( V ,  rl/) are two positively oriented charts on the oriented manifold 
M. Then 

Proof: By 2.6.2, /q~,(wJ U )  = I ( $  o rp-'),cp,(wl U) .  Hence /cp.(wl U )  = 

/+,(wl U) .  [Recall that for diffeomorphisms f. =(f-')* and ( fog ) ,  = f ,  og,.] 

e 
Thus we merely define I w  = /(q)w, where (U,cp) is any positively oriented 

chart containing the compact support of o (if one exists). 
More generally, we can define / w  where w has compact support as 

follows. 

2.6.5 Definition. Let M be an oriented manifold and an atlas of positively 
oriented charts. Let P = {(U,, cpa, g,)) be a partition of unity subordinate to a. 
Define wa = gaw (so wa has compact support in some q.). Then define 

2.6.6 Proposition. ( i )  The above sum contains only a finite number of non- 
zero terms, and hence /*w E R. 

(ii) For any other atlas of positively oriented charts and subordinate 
partition of unity Q we have / w = / w. 

P Q 

The common value is denoted l a ,  the integral of w€Qn(M) .  
X 

f! o f :  For any m e  M,  there is a neighborhood U such that only a finite 4 m number of ga are nonzero on U. By compactness of supp w, a finite number of 8 z such neighborhoods cover supp w. Hence only a finite number of ga are 
nonzero on the union of these U.  For (ii), let P= {(Ua,cp,,ga)} and Q= 

3 {(Vfl,+P,hp)) be two partitions of unity with positively oriented charts. Then 
CI 
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the functions {gahp)  have gahp(m)=O except for a finite number of indices 
(a, p), and ZaZpga hp(m) = 1 ,  for all m EM. Hence, since Z php = 1 ,  

The globalization of the change of variables formula is as follows. 

2.6.7 Theorem. Suppose M and N are oriented n-manifoldr and f:  M-+N is 
an orientation preserving diffeomolphism. If w EQn(N)  has compact support 
then f *o has compact support and l o  = I f  *w 

Proof: First, supp f *a = f - '(supp w), which is compact. For the second part, 
let { q.,q+) be an atlas of positively oriented charts of M and let P = { g,) be a 
subordinate partition of unity. Then { f (U,), qi 0 f - ' )  is an atlas of positively 
oriented charts of N and Q = { gi 0 f - ' )  is a partition of unity subordinate to 
the covering { f ( U;.)} Then 

As in 2.6.2, we have the following commutative diagram: 
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We also can integrate functions of compact support as follows. 

2.6.8 Definition. Let M be an orientable manifod with volume Q. Suppose 
f E F(M) and f has compact support. Then we define I f = I f  Q, the integral of 

n f with respect to O. 

The reader can easily check that since the Riemann integral is R linear, so 
is the integral above. 

The next theorem will show that the foregoing integral can be obtained in 
a unique way from a measure on M. (The reader unfamiliar with measure 
theory can find the necessary background in Royden [1963]. However, this 
will not be essential for future sections.) The integral we have described can 
clearly be extended to all continuous functions with compact support. Then 
we have the following. 

2.6.9 Theorem (Riesz representation theorem). Let M be an orientable 
manifold with volume Q. Let 9 denote the Bore1 sets of M, the a algebra 
generated by the open (or closed, or compact) subsets of M. Then there is a 
unique measure h on '91 (and hence a completion &) such that for evey 
continuous function of compact support, i f  dh = I j: n 

Proof Existence of such a h is proved in Royden [1963, p. 2511. For 
uniqueness, it is enough to consider bounded open sets (by the Hahn 
extension theorem). Thus, let U be open in M, and let C, be its characteristic 
function. We can construct a sequence of C m  functions of compact support 
cp, such that cp,JC,, pointwise. Hence from the monotone convergence 
theorem IQ q,, = dk+I C,dpQ = pn(U). Thus, pQ is unique. . 

Then one can define the space LP (M, Q), p E R, consisting of all measur- 
able functions f such that 1 flP is integrable. For p > 1, the norm 11 flip= 
( I (  f I p  dpQ)'h makes LP(M, S'Q into a Banach space (functions that differ only 
on a set of measure zero are identified). 

The behavior of these spaces under mappings can give information about 
the manifold. In particular, the effect under flows is of importance in 
statistical mechanics. In this connection we have the following. 

2.6.10 Proposition. Let M be an orientable manifod with volume O. Suppose 
X X is a complete vector field on M with flow F. l%en X is incompressible iff h is 

F invariant, that is, I f dpQ = I f o F A d h  for all A, and f E L'(M, O). 2 
0 A 
8 Proof If X is incompressible, and f is continuous with compact support, 

then / ( f o  F,)Q = 00 FA(FA)* = J(F,)*(fO) =)=lf O. Hence, by uniqueness in ' Z 2.6.9, we have i f d p n  =/ ( foF , )dp ,  for all integrable f. Conversely, if 
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IVo FA)dh = If dpQ, then taking f continuous with compact support, we see 

Thus, for every integrable f, I f dpQ = IUdet, FA) dk. Hence, det, FA = 1, 
which implies X is incompressible. . 

We now make a number of remarks and definitions preparatory to 
proving Stokes' theorem. 

Let R: = {x = (x,, . . . , x,) E R " IXn > 0) denote the upper half-space of 
Rn  and let U c R: be an open set (in the topology induced on R: from Rn). 
Call Int U= U n {x E Rnlxn >0)  the interior of U and aU= U n (Rn-' x 
(0)) the boundary of U. We clearly have U = Int U u a U, Int U is open in U, 
a U closed in U (not in R "), and a U n Int U = 0. 

Let U, V be open sets in R: and$ U+ V. We shall say that f is smooth if 
for each point x E U there exist open neighborhoods U, of x and V, of f(x) 
in Rn  and a smooth map f,: Ul+ V, such that flU n U, = fllU n U,. We 
then define Df(x) = Df,(x). We must prove that this definition is independent 
of the choice off,, that is, we have to show that if cp: W+Rn is a smooth 
map with W open in Rn  such that cpl W n R: = 0, then DHx) = 0 for all 
x E W n R: . If x E Int( W n R:), there is nothing to prove. If x E a( W n 
R:), choose a sequence xn E Int(W n R:) such that x,+ x; but then 0 = 
Dcp(x,)+ DHx) and hence D+(x) = 0, which proves our claim. 

Let U c R: be open, cp: U+R: be a smooth map, and assume that for 
some q, E Int U, Hx0) E aR:. We claim that Dcp(xJ(Rn) c aW:. To see this, 
letp,: Rn + R be the canonical projection onto the nth factor and notice that 
the relation 

+(x0 + tx) =+(x0) + D+(xO)-tx + ~ ( t x )  

where lim,,oo(tx)/t =0, together with the hypothesis (p, o+)(Y) > 0 for all 
y E U, implies 0 < (p, +)(xo + tx) = 0 + (p, D+)(xo) .tx +P, (o(tx)), whence 
for t>O 

- 
6 Letting t+O, we get (p, D+)(xo)-x > 0 for all x E  Rn. Similarly, for t <O, m 

letting t-0, we get (p, D+)(x,).x < 0 for all x E Rn. The conclusion is 8 2 
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We now prove the following assertion: 

Lemma. Let U, V be open sets in RI: and f: U+ V a diffeomphism. Then f 
induces diffeomophisms Int f: Int U+ Int V and af: a U+a K 

Proof: Assume first that aU = 0 ,  that is, that U n (Rn- ' X (0)) = 0. We 
shall show that aV = 0 and hence we take Int f = f. If aV # 0, there exists 
x E U such that f(x) E aV and hence by definition of smoothness in R:, 
there are open neighborhoods in Rn, U, c U, x E Ul, Vl c Rn, f(x) E Vl, 
and smooth maps f,: U, + V,, g,: V, + U, such that f 1 U, = f,, g,l V n V, = 

f - ' l ~  n V,. Let xn E U,, xn+x, y, E V,\aV, and y,, = f(xn). We have 

= lim D(fog,)(y,,) = idRm 
r.-.f(x) 

and similarly 

so that Df(x)-' exists and equals Dg,Cf(x)). But we saw above that 
Df (x)(Rn) c Rn- ' X {0}, which is impossible, Df (x) being an isomorphism. 

Assume that aU# 0. If we assume aV= a, then, working with f -' instead 
of f, the above argument leads to a contradiction. Hence aV#0. Let 
x E Int U so that x has a neighborhood U, c U, U, n aU= 0, and hence 
aU, =a. Thus, by the above argument, af(U,)=(ZI, and f(U,) is open in 
V\aV. This shows that f(Int U)cInt V. Similarly, working with f - I ,  we 
conclude f (Int U) ZI Int V and hence f: Int U+Int V is a diffeomorphism. But 
then f (a U) = a V and f la U: aU-a V is a diffeomorphism as well. w 

Now we define a mcuu~old with boundary exactly as in Sect. 1.4 with the 
following difference: if (U,+) is a chart, we require that (P(U)cR:. Let 
& = {(U,+)} be an atlas on the manifold with boundary M. Define Int M= 
u .+ - '(lnt (+( U))) and aM = u ,+ - '(a(+( U))) called, respectively, the inter- 
ior and boundary of M. Their definition makes sense by the lemma above. 
Int M is open in M and so is an n-dimensional manifold; aM is an (n - 1)- 
dimensional manifold (possibly empty) without boundary. 

If & = {(U, +)} is an atlas on M, then the atlas 9 = {(aU,pn o a+)}, 
pn a+: a U+a+(U) c Rn- ' defines the manifold structure on aM. 

X Summarizing, we have proved the following. 
l4 2 2.6.11 Proposition. If M is an n-manifold with boundary, then its interior 9 

Int M and its boundary aM are smooth manifolh without boundary of dimension B n and n - 1, respectiuely. Moreover, iff: M+N is a diffeomophism, N being 
another n-manifold with boundary, then f induces, by restriction, two diffeomr- 
phisms Intf: Int M+Int N and df: aM+aN. 
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Figure 2.6-1. 

Our next goal is Stokes' theorem, which deals with integration, so we have 
to define orientation on a manifold with boundary. A glance at the definition 
of orientability shows that the definition extends without difficulty to the case 
of manifolds with boundary. It is convenient to have in mind the following 
geometric interpretation of an orientation on M. An orientation on M is just 
a smooth choice of orientations of all the tangent spaces, "smooth" meaning 
that for all the charts of a certain atlas, the oriented charts, the maps 
D(%O+~-')(X): R n  += Rn are orientation preserving. With this picture in mind, 
we can define the boundary orientation of aM in the following way. At every 
x E aM, Tx(aM) has codimension one in Tx(M) so that there are-in a chart 
on M intersecting aM--exactly two vectors perpendicular to xn = 0: one 
points inward, the other outward. Our assertion preceding 2.6.1 1 assures us 
that a change of chart does not affect the quality of a vector being outward or 
inward. (See Fig. 2.6-1.) 

We shall say that a basis {v,, . . . , on- ,) of T'(aM) ispositive& oriented if 
{ - a/axn, v,, . . . , vn- ,) is positively oriented in the orientation of M. This 
defines the induced orientation on aM. 

2.6.12 Stokes' Theorem. Let M be an oriented smooth n-manifold with Y s boundary and a E an-'(M) have compact support. Let i: aM+ M be the q 
inclusion map so that i*a E an- ' ( 8 ~ ) .  Then rn 

8 
"a 


