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2.3.17 Proposition. If p: UXF-yU’
Is-an isomorphism on each ‘

Is a local vector bundle map that
bundle isomorphism, so is q

l/ er 1 ] j
’ » III(,] SC LS {’*; ltﬂ f)'(’)té > 1 {' 18 a [()(‘CII (6’(‘[0
ey 0 ( 7 " ( . y 7

) e+

Proof. This is a special case of 1.7.9. &

2.3.18 Definition. Suppose m: E—B is q vector bundle. Define

W (E)a= U @ (E,)

beA

where A is a subset of B and E —‘-w"( b) i ] Le

: ; b ) is the fiber over beB.
wl‘(E)lB—“wl‘(E) and d({finc wl‘('rr).' w‘(E)—»B by wk('n')(l)—"b zftEQk(E )I
\"~b)"

2.3.19 Theorem. Suppose {E|U, ¢;} is a vector bundle atlas of m, where ,:
E|U,— U/ X F/. Then {wX(E)|U, @} is a vector bundle atlas of w"(wi:
w“(E)— B, where ¢, : w*(E)|U,— U’ QX(F)) is defined by ¢, |E, = (¢ |E,)s
(as in 2.3.16). : ’

Proof. We must verify (VBA 1) and (VBA 2) of 1.5.2: (VBA 1) is clear; for
W BA 2) let ,,¢; be two charts on m, so that @ o' is a local vector bundle
isomorphism. (We may assume U, = U;.) But then from 2.3.15, @09, =

(piog~ "+, which is a local vector bundle isomorphism by 2.3.17. B

Because of this theorem, the vector bundle structure of w: E— B induces
naturally a vector bundle structure on «*(w): w*(E)—B, which is also
Hausdorff, second countable, and of constant dimension. Hereafter o () will
denote this vector bundle.

EXERCISES

2.3A. If k! is omitted in the definition of 4 (2.3.2), show that A fails to be

associative. ; :
2.3B. Show that, in terms of components, our definition of the determinant is

the usual one.
2.3C. If ais a two-form and B is a one-form, show that

(anB)(e;, e, e5)=a(e,, e;)B(e;) —ale;, e3)B(e;) +ale,, e3)B(e)
2.3D. Show that if e,,...,e, is a basis of E and a',...,a" is the dual basis, then
(@'n--- Aa)ey,....e,)=1.

2.4 CARTAN’S CALCULUS OF DIFFERENTIAL FORMS

bra of the preceding section to tangent
ulus that is special to this case. Thx§ 18
f Sect. 2.6 and to the Hamiltoman

We now specialize the exterior alge
bundles and develop a differential calc
basic to the dual integral calculus o
mechanics of Chapter 3.
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le of a manifold M, 1et &
- '« the tangent bU“d ” (M) =
If 7y - fM—»ZW 1skthc) ei Y wA(M),-)M is the vectg)r bundle of
L*(TM), and wh=0"(Tr) ° nt'spaces of M. Also, let Q (M)=9?(M),

on the tange

exterior K and QA(M)=T"(@

k _'k=2q37"' ‘
SZI(A!‘/):‘.‘T?(/W). an M)

F(M) module, Qk(M) is an

@ \,—0 n
2.4.1 Proposition. Regarding (M) as a

(M) submodule. :
f ¢.1,EQ5(M) and fEF(M), we must ShOV\ll fgt,l-*-tzf? (M),
I’;"""f 1 I7 l;l‘\i/e have f®I,+12€‘.‘T,?(M). But, by 2.3.1, f®1,(m)+ t,(m)e
m 1.7.19,
Q{(()T M) and the result follows. W
(M) and /)’EQI(M),k,[=O, l,...,n, define apf:

) k
2.4.2 Proposition. [f a €S} Then anf EVT(M), and A is

Moot (M) by (anB)(m)=a(mnrB(m).
bilinear and associative.

Proof. First, A is bilinear and associative by. 2.3.5. To show a/\,B_ is of class
C*. consider the local representative of anf In natural charts. Tl’}lS is 2 map
of the form (anB),=Be (e, X B,), with g o @ and B= A, which is bilin-
ear. Thus (anp), is C* by Leibniz’ rule. H

2.4.3 Definition. Let UM) denote the direct sum of QX(M), k=0,1,...,n,
together with its structure as an (infinite-dimensional ) real vector space and with
the multiplication n extended componentwise to QUM). We call QM) the
algebra of exterior differential forms on M. Elements of QX(M) are called
k-forms. In particular, elements of X *(M) are called one-forms.

g Note that we generally regard Q(M) as a real vector space rather than an
7(M) module [as with T(M)]. The reason is that F(M)=Q%M) is included
in the direct sum, and fra =f®a=fa.

2.4.4 Notation. Let (U,q) be a chart on a manifold M with U’ = @(U)C R".

Let e, denote the standard basis of R"
, denc and let e(u)=T  o~! ;). Simi-
larly let o' denote the dyqy basis of e, and gi(u)=(T (p;)"sz)((p})(u)(zg;l)’[eﬁl.ugl?ol’

each u€ U,e,(u) and o' (u) are dual bases of the fiber T M.] Then if o(u)=

ad
\f_= Le'f=%°
dx' G '

at points u .

With these notations, we see dx'(u)= a'(u),
a (u), for

dx'(u)(e,(u)) = : B
()(¢(u))= P, T x “Tow® ™ (p(u),e) =T (x o) (g(u).e)

=D(Xi°<p")(<p(u))-ej e 6ji
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H(u)= 41} (w)e,®- - Bg, @dx/ @ - - @l
and for each we Q% (V)

w(u)= D W; ... (u)dx' ' pn- -+ ndx'(u)

where

and

Wy =050 )

.’_ik

The extension of d to QX(M) is given by the following.

2.4.5 Theorem. Let M be a manifold. Then there is a unique family of
mappings d*(U): QX (U)-Q**(U) (k=0,1,2,...,n, and U is open in M),
which we merely denote by d, called the exterior derivative on M, such that

(i) d is a A antiderivation. That is, d is R linear and for a €QX(U),
BEQ (),

d(anB)=darB+(—1)*andp
(i) If fE€S(U), df=df (as defined in 2.2.1);
(iii) dod=0 (that is, d** (U)°d*(U)=0);
(iv) d is natural with respect to restrictions; that is, if UCV C M are open

and a €QX(V), then d(a|U)=(da)|U, or the Jollowing diagram com-
mutes.

U
Q(V) Q5 (U)

a\ ”
QLAY ———= (V)

|U

As in Sect. 2.2, condition (iv) means that d is a local operator.
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/ pRELIMINARI yisa function. Then
1
" der F*(yne) Whe!
1y first conside
We first €«

Proof. )-—(T F)* Oll/woF(m)
FH(yw)(m e [(x[/"F)'(woF)](m)
)
= F(rn))F*w(m . ~ as
pegmge L VESRUD, TheE © follovs i
or F*(ne)=F7 ‘;}SF(V‘S For (ii) we shall S‘;‘z"}izl U)=(F*dw)|U, which is
mediately from 2.0 i

hat S Let (V, )
M such that o restriction. Let (V, ¢
borhogg Ud(zlfflﬁ-eboth natural with res;c)lei)tf tm e M with F(U)C V.
* C i
i asth art1 F(m) and U a neighborhoo
local chart a :
?iean for wEQ¥(V), we can Writé

a neigh

. I
dY’l/\' . /\d_x

]""l\

w=w;

; iy Jd;, = :
dw-':aiowil---iA diop: -« nax", < 9o

and by (i) above
F*wlU=(F*w,-|...,-k)F*dx"/\- - AF*dx
But if y €QYN), d(F*y)= F*dy by the composite mapping theorem, so
d(F*o|U)=F*(dw,. , )AF*dx'\p-- - A\F*dx'
= FH(dw)|U
by (i) above. m
2.4.10 Corollary. The op

That is, if F: M—N is
diagram commutes:

erator d is naturql w

j ith respect to diffeomorphisms.
a dlffeomcrphism, then

Fydw=dF,w, or the Jollowing

Fy
HO— grawy

Qk+l(M i

Proof. With Fy defined as "

=(F\0
then follows from 2.4.9(ii). . (F)% we see that F

*a(F‘l)*. The reacil+
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VI\hL\ n > 3 »
Xt few PTropositio;

derivative and t} 1S give some important relations between the Lie

1€ exterior derivative.
2.4.11 Theorem,
is, for we Qk (M) y
diagram commutes-

Let X €X (M). Then d is natural with respect to L,. That
e have Lywe Q" (M) and dLyw= L,dw, or the /l”[()“)[ng

L
QK (M) > QK (M)

dl l"

QA+ (M) ——— QM)

“ X

Proof. If a',..., akeQ (M) we have
1
LX((X /\'"/\(Y")=L‘\‘a'/\(12/\"‘/\01/‘+"' +(x|/»-"/LXak

This follows from the fact that L, 1s R linear and is a tensor derivation. Since
locally wEQX (M) is a linear combination of such products, it readily follows
that L,w€Q*(M). For the second part, let (U,a,F) be a flow box at me M
so that from 2.2.20,

Lyw(m)= g5 (Fre)(m)|

But from 2.4.10 we have F¥ dw= d(F}w). Then, since d is R linear,
commutes with d/d\ and so dLyw = Ly dw. W

The foregoing proof can also be carried out in terms of local represent.
tives.

2.4.12 Definition. Let M be a manifold, X € X(M), and & € Qk+Y(M). Th
define iyw € J9(M) by
b (X ke r s Xp) = (X, X1y . -, Xi)

If w € QUM), we put ixw=0. We call iyw the inner product of X and w.

2.4.13 Theorem. We have Iy : SZ"(M)—-)Q"”I(M), k=1,...,n, and, for a €

(M), BEX (M), fEX(M),
(i) iy is a A antiderivation. That is, iy is R linear and
iy (anB)=(ixa)rB+(= Y an(ixB);
(ii) iga=fix®
iy ixdf=Lf
(iv) Lya=ixda+t diyc;
(v) ija =fLXa+df/\lXa.
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2.2.8. For (i), R linearity 1S

Proof. Thatixa e 0k~ 1(M) follows at once from
roof. X

clear. For the second part of (1)

iy(an B)( Xy X3 -0 Xeotl™ |

d
. . _MAUXMX’,B) ;‘
iXa/\,B+(—l) a/\lxﬂ" (k’l)![! |

X k+1—1)! ®i,fB)

be replaced by the sum
But the sum over all permutations in the last term can P

1 k+2,...,k+l)i—>
. 1 2»3,""k+1,’ ole
ovr o whete 08 1 DT yicnce () follows. For (1, we merey
(L2300 4 '

: e ¢ LS.
note a, is linear, and (iii) is just the definition ;‘). tX{lOte N
FO: (iv) we proceed by induction on k. Firs

: k + 1 form may be
reduces to (iii). Now assume that (iv) holds' for k. Th:in g;lborho()d i eyM
written as SdfAw;,, where «; s a k form, in some n .

But L,(df nw) = Ly dfrw+ df ANLyw and
iyd (dfrw)+ diy (dfrw)= — iX(df/\dw) +d (iydfrno— df niyw)
= —iydfndwt df niy dw+ diy df nw
+ iy df ndw+ df adiye
=dfaLyw+dLyfAw

S —————

by our inductive assumption and (ii). Since dLyf= Ly df, the result follows.
Finally for (v) we have

Lﬂw= l}xdw+ dijxw=fixdw+ d(ﬁxw)

=fix dw+df/\ixw‘+fdixw

=fLyo+dfniy0 W

The behavior of i g
following, of mner products under diffeomorphisms is given by the

2.4.14 Proposition. [t

phism. Then, if w€Q*(N) L and N be. rianf

olds and f: M—N a diffeomor
and X € X(N), we have :

ISBN 0-80530102-X
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2 CALC
LCuLus ON MANIFOLDS

% 1 l'f *X
Qk

)k - I(N)T Szk~|(M)

Similarly for Y €°X
milarly for Y € X.(M) we have the following commutative diagram:

Q (M) A — O(N)

1 lf

QM) >
el

Proof. Letov,,...,0,_, €T, (M) and n=f(m). Then by 2.4.12 and 2.4.7
o f*(m)- (0,06 )
= f*w(m)-(f*X (m), vp,..-,01)
= f*w(m)-(Tf " e X (n), 01,0 1)
=w(n)-(Tfe Tf ~'X (n), Tfo,.--, o 1)
=iyw(n) (Tfoy,..., Tfoe_1)

=f*ixw(m)~(v,,...,vk_1) &

The next proposition eXpresses d in terms of the Lie derivative (Palais

[1963]).

2.4.15 Proposition. Let X; € X(M),i=0,...,k and w €& QX(M). Then we

have
(i) (onw)(X,, Xy - on(w(Xl, e A)

—Ew(x,,.. , Ly X T X0

i=1

k -~
(i) dw(Xp X1+ > X)= 2 (- 1YLy (@(Xor - - - » > s (9
i=0

ey (—1)"+fw(LX‘_(xj),X0,...,x,.,...,Xj,...,xk)

0<i<j<k

where X, denotes that X; is deleted.



4) following 2.2.17. Fo (i) we

A tion (D dw(Xo) = Ly w. Assume
art () is exactly €7 n=dl* it 15 meriley by 2.4.13(iv), o
)"o(’f‘:d }:v induction F?rw QK(M), We haX ’)
proce " —1. Then1 , X
formula for /" LX) = (iy dw)(X 1, .
da(Xo X - (L) (Ko -+ X0~ (@)K x,
= LXOw l ’
= L (w(Xl """" Xk))
: I+ X; .9 Xk)
=2 w(Xy oo Exgti
|
by (1))
— (dig @)Xy -2 X0 (By(

after a simple permutation and 2.4.12,

(d(ix 0))(Xy, - -, Xp) = é b AR e e, T @)
£ B <]

1=

R 2 (_1)i+jw(LXi‘X;"XO9X1,°--’X"'--aX”""Xk)

]
I<i<j<k
Substituting this into the above easily yields the result. &

2.4.16 Definition. We cqy; EQ(M) closed

if do=0, and exact if there is
an «EXNM) such thay w=da.

2.4.17 Theorem, (i) Eve
(i1)  (Poincare lemma).
neighborhood [/ of m for wh;

Y exact form js closed.

If w is closed, then Jor each me M, there is a
ch wIUEQk(U) is

exact,
Proof. Part

(1) is clear since o
together with d

d=0. Usin

& 2a local chart and 2.4.9(11)
Nt to consig

2.4.5(iv). it ; g
6 o Sl o e S 124 1450
P01y sycp that 1;); gn S i B
gve the result, for g,,_ fntla Hedis identity o ok (U). This will
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2 CALCULUS ON MANIFOLDS
Ihen, by 24.6

(The interchange of D and [ is permissible, as w is smooth and bounded over
1 €[0,1].) However, we also have, by 2.4.6,

1
Hdco(u)-(el,...,e,‘.)=f0 t“do(tu)(ue,,...,e,)dt
I
=f t*Dw(tu)u(e,,... e )dr
0

k el
iy (-1)'[ t*Des(tu)-e(u ey,....é,...,e,)dt
0

i=1

Hence

[de(u)+Hdw(u)](el,...,ek)=folkt"_'w(tu)-(el,...,ek)dt
L, '
+f0 t*Dw(tu)-u(e,,....e.)dt

=fol%[tkw(tu)'(e,,...,ek)]dt
=w(u) (e),--.,€)

which proves the assertion. [l

I : hat is useful to understand.
-« another proof of the Poincaré lemma t ’ '
.There flswill help the reader master the proof of‘ Darboux theorerrg in Sect.
gis pr(;)(i)s similar in spirit to the proof of Frobenius’ theorem (2.2.26).
.2, an

P 0, i ? W I U be a ball about 0

{lterna 4 ro0 the Poincare Lemma. € agamn let : :

. : é‘(.)f F (u)— tu. Thus F, 1S a diffeomorphlsm and, starting at
’ i

in F. Let, for t
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, PRELI old
120 1 or field
c-dc[\‘ndcnl ecll

- the um
s senerated by the i1

=1,

rherefore. since w 18 closed,
i 1€
) f x\ I'I(u))
hat is, Fi(#)=H4 and dF, (1) dr ¥ |
that 18, 17
% pro=FrLxe
4
,_ F,*(dl\':w)
=d(Fix w)
For 0< fo< 1, W€ get
1
i wdl
— Fo= f Friy
2 o fo
w=dp, where

Letting 7,—0, we get

l -
’B='[0 F,*lewdt

Explicitly,

1 B
Bu(el,...,ek_1)=f0t" lwm(u,el,...,e,(_l)dt

(Note that this 8 agrees with that in the previous proof.) W

See Exercise 2.4E for a relative Poincaré lemma.

It is not true that closed forms are always exact (for example, on 2
sphere). In fact, the quotient groups of closed forms by exact forms (called
the de Rham cohomology groups of M) shed light on the manifold topology.
A discussion may be found in Flanders [1963], Singer and Thorpe [1967], and
in de Rham [1955].
~ In differential geometry the use of vector valued forms is important; that
;i;acé:eVrt:(;;laces multilinear maps into R by multilinear maps into a vector

- e can utilize the exterior calculus by taking the components of the

form. For applications t ’ :
[1972], or Spivak [1974) © geometry, see Kobayashi-Nomizu [1963], Chern

Thg following table Summarizes s

: ome of the i raic identities
ential forms that hay important algeb

¢ been obtained.
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