own right

llowing I ule F the morphism identities

in C m

uced by a

tor from

to itself and to itself are managemple 5. In the object of as a second control of a second control

to classe at the sategory of the the carcal spaces hisms are damental

egory SM.
To each

smooth bundle map by Exercise 5.7. The fact that this is a functor is content of parts (b) and (c) of Lemma 3.5.

Problems

- If E is a vector bundle over a topological space M, show that the projection map $\pi \colon E \to M$ is a homotopy equivalence.
- Prove that the space E constructed in Example 5.2, together with the projection $\pi \colon E \to \mathbb{S}^1$, is a smooth rank-1 vector bundle over \mathbb{S}^1 , and show that it is nontrivial.
- Let $\pi \colon E \to M$ be a smooth vector bundle of rank k over a smooth manifold M. Suppose $\{U_{\alpha}\}_{{\alpha}\in A}$ is an open cover of M, and for each ${\alpha}\in A$ we are given a smooth local trivialization $\Phi_{\alpha}\colon \pi^{-1}(U_{\alpha})\to U_{\alpha}\times \mathbb{R}^k$ of E. For each ${\alpha},{\beta}\in A$ such that $U_{\alpha}\cap U_{\beta}\neq\emptyset$, let $\tau_{\alpha\beta}\colon U_{\alpha}\cap U_{\beta}\to \mathrm{GL}(k,\mathbb{R})$ be the transition function defined by (5.3). Show that the following identity is satisfied for all ${\alpha},{\beta},{\gamma}\in A$:

$$\tau_{\alpha\beta}(p)\tau_{\beta\gamma}(p) = \tau_{\alpha\gamma}(p), \qquad p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}.$$
 (5.6)

(Here juxtaposition of matrices represents matrix multiplication.)

- Let M be a smooth manifold and let $\{U_{\alpha}\}_{{\alpha}\in A}$ be an open cover of M. Suppose for each $\alpha,\beta\in A$ we are given a smooth map $\tau_{\alpha\beta}\colon U_{\alpha}\cap U_{\beta}\to \operatorname{GL}(k,\mathbb{R})$ such that (5.6) is satisfied for all $\alpha,\beta,\gamma\in A$. Show that there is a smooth rank-k vector bundle $E\to M$ with smooth local trivializations $\Phi_{\alpha}\colon \pi^{-1}(U_{\alpha})\to U_{\alpha}\times\mathbb{R}^k$ whose transition functions are the given maps $\tau_{\alpha\beta}$. [Hint: Define an appropriate equivalence relation on $\coprod_{\alpha\in A}(U_{\alpha}\times\mathbb{R}^k)$, and use the bundle construction lemma.]
- Let $\pi\colon E\to M$ and $\widetilde{\pi}\colon \widetilde{E}\to M$ be two smooth rank-k vector bundles over a smooth manifold M. Suppose $\{U_{\alpha}\}_{\alpha\in A}$ is an open cover of M such that both E and \widetilde{E} admit smooth local trivializations over each U_{α} . Let $\{\tau_{\alpha\beta}\}$ and $\{\widetilde{\tau}_{\alpha\beta}\}$ denote the transition functions determined by the given local trivializations of E and \widetilde{E} , respectively. Show that E and \widetilde{E} are smoothly isomorphic over M if and only if for each $\alpha\in A$ there exists a smooth map $\sigma_{\alpha}\colon U_{\alpha}\to \mathrm{GL}(k,\mathbb{R})$ such that

$$\widetilde{\tau}_{\alpha\beta}(p) = \sigma_{\alpha}(p)^{-1} \tau_{\alpha\beta}(p) \sigma_{\beta}(p), \qquad p \in U_{\alpha} \cap U_{\beta}.$$

Let $U = \mathbb{S}^1 \setminus \{1\}$ and $V = \mathbb{S}^1 \setminus \{-1\}$, and define $\tau \colon U \cap V \to \mathrm{GL}(1, \mathbb{R})$ by

$$\tau(z) = \begin{cases} (1), & \operatorname{Im} z > 0, \\ (-1), & \operatorname{Im} z < 0. \end{cases}$$

By the result of Problem 5-4, there is a smooth real line bundle F- \mathbb{S}^1 that is trivial over U and V, and has au as transition function. Show that F is smoothly isomorphic to the Möbius bundle of Example \blacksquare

- 5-7. Compute the transition function for $T\mathbb{S}^2$ associated with the two loss trivializations determined by stereographic coordinates.
- 5-8. Let $\pi\colon E\to M$ be a smooth vector bundle of rank k, and smooth vector bundle of rank k. pose $\sigma_1, \ldots, \sigma_m$ are independent smooth local sections over an open subset $U \subset M$. Show that for each $p \in U$ there are smooth tions $\sigma_{m+1}, \ldots, \sigma_k$ defined on some neighborhood V of p such $(\sigma_1, \ldots, \sigma_k)$ is a smooth local frame for E over $U \cap V$.
- 5-9. Suppose E and E' are vector bundles over a smooth manifold and $F \colon E \to E'$ is a bijective bundle map over M. Show that $F \equiv$ bundle isomorphism.
- 5-10. Consider the following vector fields on \mathbb{R}^4 :

$$\begin{split} X_1 &= -x^2 \frac{\partial}{\partial x^1} + x^1 \frac{\partial}{\partial x^2} + x^4 \frac{\partial}{\partial x^3} - x^3 \frac{\partial}{\partial x^4}, \\ X_2 &= -x^3 \frac{\partial}{\partial x^1} - x^4 \frac{\partial}{\partial x^2} + x^1 \frac{\partial}{\partial x^3} + x^2 \frac{\partial}{\partial x^4}, \\ X_3 &= -x^4 \frac{\partial}{\partial x^1} + x^3 \frac{\partial}{\partial x^2} - x^2 \frac{\partial}{\partial x^3} + x^1 \frac{\partial}{\partial x^4}. \end{split}$$

Show that there are smooth vector fields V_1, V_2, V_3 on \mathbb{S}^3 such that V_j is ι -related to X_j for j=1,2,3, where $\iota\colon\mathbb{S}^3\hookrightarrow\mathbb{R}^4$ is inclusion Conclude that \mathbb{S}^3 is parallelizable.

5-11. Let V be a finite-dimensional vector space, and let $G_k(V)$ be Grassmannian of k-dimensional subspaces of V. Let T be the disjoint union of all these k-dimensional subspaces:

$$T = \coprod_{S \in G_k(V)} S;$$

and let $\pi: T \to G_k(V)$ be the natural map sending each point $x \in \mathbb{Z}$ to S. Show that T has a unique smooth manifold structure making Tinto a smooth rank-k vector bundle over $G_k(V)$, with π as projection and with the vector space structure on each fiber inherited from Remark: T is sometimes called the tautological vector bundle over $G_k(V)$, because the fiber over each point $S \in G_k(V)$ is S itself.

- 5-12. Show that the tautological vector bundle over $G_1(\mathbb{R}^2)$ is isomorphic to the Möbius bundle. (See Problems 5-2, 5-6, and 5-11.)
- 5-13. Let V₀ be the category whose objects are finite-dimensional real vec tor spaces and whose morphisms are linear isomorphisms. If $\mathcal F$ is covariant functor from V_0 to itself, for each finite-dimensional vector