348 13. Orientations

quotient map of the set {(m,y) € R? : Jy| £ 1}. (It is a smooth
9.manifold with boundary.) Show that neither £ nor M is orientabie,

13-13. Let £ be as in Problem 13-12. Show that the orientation covering of
E is diffcomorphic to S' x R, :

13-14. Let U C R? be the open subset {(z,7,2) : (Va2 +y? - 2)2+z2 <1} 5
(the solid torus of revolution bounded by the doughnut surface of 5
Example 8.13). Define a map F: R* = U by

Flu,v) = (cos 2mu{2 + tanhv cos mu),
sin 27u(2 + tanhv cos wu), tanhv sin ma) .

(a) Show that ' descends to a smooth embedding of F into U, where
E is the total space of the Mébius bundle of Problem 9-18.

(b) Let S be the image of F. Show that S is a closed embedded
submanifold of U.

(c) Show that there is no normal vector field along S.

(d) Show that S has no global defining function in U.
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346 13. Orientations

Proposition 13.26. Suppose M is any Riemaennion manifold with bound-
ary. There is a unique smooth outward-pointing unit normal vector field N

along OM .

Proof. First we prove uniqueness. At any point p € HM, the vector space
(T,6M)*+ C T,M is 1-dimensional, so there are exactly two unit vectors at
p that are normal to M. Since any unit normal vector NV is obviously trans-
verse to @M, it must have nonzero z™-component in any smooth boundary
chart. Thus exactly one of the two choices of unit normal has negative
£"-component, which is equivalent to being outward-pointing.

To prove existence, we will show that there exists a smooth outward
unit normal field in a neighborhood of each point. By the uniqueness result
above, these vector fields all agree where they overlap, so the resulting
vector field is globally defined.

Let p € 8M. By Proposition 11.24, there exists a smooth adapted or-
thonormal frame (B, ..., Ey) in a neighborhood U of p. In this frame, E,
is a smooth unit normal vector field along M. If we assume (by shrinking
U il necessary) that U is connected, then E, must be either inward-pointing
or outward-pointing on all of M NU. Replacing E, by —F, if necessary,
we obtain a smooth outward-pointing unit normal vector field defined near
p. This completes the proof. 0

The next corollary is immediate.

Corollary 13.27. If (M,g) is an oriented Riemannian manifold with
boundary and § is the induced Riemannian metric on OM, then the volume
form of g is

dv; = (N_JdVg)]aM,

where N is the outward unit normal vector field along OM.

Problems

13-1. Suppose M is a smooth manifold that is the union of two ori-
entable open submanifolds with connected intersection. Show that
M is orientable. Use this to give another proof that § is orientable.

13-2. Suppose m: j/f — M is a smooth covering map and M is orientable.
Show that M is also orientable,

13-3. Suppose M and N are oriented smooth manifolds snd F: M - N
is a local diffeomorphism. If M is connected, show that I is either
orientation-preserving or orientation-reversing.

13-4. Suppose M is a connected, oriented, smooth manifold and ' is a
discrete group acting smoothly, freely, and properly on M. We say




