quotient map of the set $\{(x,y) \in \mathbb{R}^2 : |y| \leq 1\}$. (It is a smooth 2-manifold with boundary.) Show that neither E nor M is orientable.

- 13-13. Let E be as in Problem 13-12. Show that the orientation covering of E is diffeomorphic to $\mathbb{S}^1 \times \mathbb{R}$.
- 13-14. Let $U \subset \mathbb{R}^3$ be the open subset $\{(x,y,z): \left(\sqrt{x^2+y^2}-2\right)^2+z^2<1\}$ (the solid torus of revolution bounded by the doughnut surface of Example 8.13). Define a map $F\colon \mathbb{R}^2\to U$ by

$$F(u, v) = \left(\cos 2\pi u(2 + \tanh v \cos \pi u),\right.$$

 $\sin 2\pi u (2 + \tanh v \cos \pi u), \tanh v \sin \pi u$.

- (a) Show that F descends to a smooth embedding of E into U, where E is the total space of the Möbius bundle of Problem 9-18.
- (b) Let S be the image of F. Show that S is a closed embedded submanifold of U.
- (c) Show that there is no normal vector field along S.
- (d) Show that S has no global defining function in U.

13-5. Let $\alpha \colon \mathbb{S}^n \to \mathbb{S}^n$ be the antipodal map: $\alpha(x) = -x$. Show that α is orientation-preserving if and only if n is odd.

13-6. Prove that RIPn is orientable if and only if n is odd.

13-7. If ω is a symplectic form on a 2n-manifold, show that $\omega \wedge \dots \wedge \omega$ (the n-fold wedge product of ω with itself) is a nonvanishing 2n-form on M, and thus every symplectic manifold is orientable.

13-8. Suppose M is an oriented Riemannian manifold, and $S \subset M$ is an oriented hypersurface (with or without boundary). Show that there is a unique smooth unit normal vector field along S that determines the given orientation of S.

13-9. Suppose M is a smooth orientable Riemannian manifold and $S\subset M$ is an immersed or embedded submanifold.

(s) If S has trivial normal bundle (see page 282), show that S is

orientable. (b) If S is an orientable hypersurface, show that S has trivial normal

bundle.

13-10. Let \widehat{M} be a connected, nonorientable smooth manifold, and let $\widehat{\pi}\colon \widehat{M}\to M$ be its orientation covering.

(a) If \widehat{M} is an orientable smooth manifold and $\pi\colon \widehat{M}\to M$ is a smooth map smooth covering map, show that there exists a smooth map $\varphi\colon M\to \widehat{M}$ such that $\widehat{\pi}\circ \varphi=\pi$. [Hint: First define a smooth map $\varphi\colon M\to \Lambda_n^*M$ by setting $\widehat{\varphi}(p)=\sigma^*\Omega_p$ locally, where Ω is an orientation form for \widehat{M} and σ is a suitable local section of π .] Uniqueness of the Orientation Covering: If $\pi\colon M\to M$ is as above and in addition π is a two-sheeted covering, show is as above and in addition π is a two-sheeted covering, show

13-11. Suppose S is an oriented embedded 2-manifold with boundary in \mathbb{R}^3 , and let $C = \partial S$ with the induced orientation. By Problem 13-8, there is a unique smooth unit normal vector field N on S that determines the orientation. Let T be the oriented unit tangent vector field on C, and let V be the unique unit vector field tangent to S along C that is orthogonal to T and inward-pointing. Show that (T_p, V_p, N_p) is an oriented orthonormal basis for \mathbb{R}^3 at each $p \in C$.

that φ is a diffeomorphism.

13-12. Let E be the total space of the Möbius bundle, which is the quotient of \mathbb{R}^2 by the Z-action $n \cdot (x, y) = (x + n, (-1)^n y)$ (see Problem 9-18). The Möbius band is the subset $M \subset E$ that is the image under the

Proposition 13.26. Suppose M is any Riemannian manifold with boundary. There is a unique smooth outward-pointing unit normal vector field N along ∂M .

Proof. First we prove uniqueness. At any point $p \in \partial M$, the vector space $(T_p\partial M)^\perp \subset T_pM$ is 1-dimensional, so there are exactly two unit vectors at p that are normal to ∂M . Since any unit normal vector N is obviously transverse to ∂M , it must have nonzero x^n -component in any smooth boundary chart. Thus exactly one of the two choices of unit normal has negative x^n -component, which is equivalent to being outward-pointing.

To prove existence, we will show that there exists a smooth outward unit normal field in a neighborhood of each point. By the uniqueness result above, these vector fields all agree where they overlap, so the resulting

vector field is globally defined.

Let $p \in \partial M$. By Proposition 11.24, there exists a smooth adapted orthonormal frame (E_1, \ldots, E_n) in a neighborhood U of p. In this frame, E_n is a smooth unit normal vector field along ∂M . If we assume (by shrinking U if necessary) that U is connected, then E_n must be either inward-pointing or outward-pointing on all of $\partial M \cap U$. Replacing E_n by $-E_n$ if necessary, we obtain a smooth outward-pointing unit normal vector field defined near p. This completes the proof.

The next corollary is immediate.

Corollary 13.27. If (M,g) is an oriented Riemannian manifold with boundary and \tilde{g} is the induced Riemannian metric on ∂M , then the volume form of \tilde{g} is

$$dV_{\widetilde{g}}=(N\,\lrcorner\, dV_g)|_{\partial M},$$

where N is the outward unit normal vector field along ∂M .

Problems

- 13-1. Suppose M is a smooth manifold that is the union of two orientable open submanifolds with connected intersection. Show that M is orientable. Use this to give another proof that \mathbb{S}^n is orientable.
- 13-2. Suppose $\pi \colon \widetilde{M} \to M$ is a smooth covering map and M is orientable. Show that \widetilde{M} is also orientable.
- 13-3. Suppose M and N are oriented smooth manifolds and $F\colon M\to N$ is a local diffeomorphism. If M is connected, show that F is either orientation-preserving or orientation-reversing.
- 13-4. Suppose M is a connected, oriented, smooth manifold and Γ is a discrete group acting smoothly, freely, and properly on M. We say