Geometry and Topology Preliminary Exam. Math. UC Santa Cruz. Spring 2020.

1. Let the "half-rank" of a non-vanishing one-form α at a point p be the maximum integer ℓ such that $\alpha(p) \wedge(d \alpha(p))^{\ell} \neq 0$
a) Compute the half-rank of $\alpha=d x_{5}+x_{4} d x_{3}+x_{2} d x_{1}$
b) Show that if α is a non-vanishing one-form on a manifold of odd dimension $n=2 k+1$ then its rank at any point is at most k
c) Construct a one-form on \mathbb{R}^{5} whose half-rank is 1 for points p lying on a linear hyperplane and 2 for all points off this hyperplane.
2. Let K be an invertible symmetric real $n \times n$ matrix. Consider the set of all real $n \times n$ matrices satisfying the equation

$$
A K A^{t}=K
$$

a) Show that this set is an embedded submanifold of the space of all real $n \times n$ matrices
b) Compute its dimension
c) Desribe its tangent space at $A=I$ as a linear subspace of the space of all real $n \times n$ matrices.
3. Consider two C^{∞}-maps $f_{1}, f_{2}: \mathbb{R} \rightarrow \mathbb{R}^{2}$, Show that for a full measure set of points $v \in \mathbb{R}^{2}$ the system of equations $f_{1}(x)=f_{2}(x)+v$ has no solutions. Is this still true when the maps are assumed only to be continuous?
4. Problem: Let D be the distribution on \mathbb{R}^{3} spanned by the following vector fields.

$$
X=\frac{\partial}{\partial x}+y \frac{\partial}{\partial z}, \quad Y=z \frac{\partial}{\partial x}+\frac{\partial}{\partial y}+(x+y z) \frac{\partial}{\partial z}
$$

(1) Show that the distribution D is involutive.
(2) Find two commuting vector fields V, W spanning D.
(3) Find a coordinate chart (u, v, w) such that $V=\partial / \partial v$ and $W=\partial / \partial w$.
5. Let $X \subset \mathbb{R}^{3}$ be constructed from the unit ball by deleting the open ball of radius $1 / 2$ centered at the origin and adding back in a diameter for this ball. Compute $H_{1}(X, \mathbb{Z})$ and $H_{2}(X, \mathbb{Z})$.
6. Evaluate the integral

$$
\int_{S} \frac{x d y \wedge d z}{\left(x^{2}+y^{2}+z^{2}\right)^{3 / 2}}
$$

where S is the sphere of radius 2 centered at the origin.
7. Let $n \geq 0$. Compute the fundamental group $\pi_{1}\left(\mathbb{R} P^{n}\right)$ of real projective space $\mathbb{R} P^{n}$.

