GEOMETRY AND TOPOLOGY PRELIMINARY EXAM

Winter 2021

[1] Let X be the 2-sphere with a whisker connecting the north pole to the south pole. Compute the fundamental group and the homology groups of X.

[2] Consider the real projective space $\mathbb{R}P^4$.

- (1) Describe a cell structure of $\mathbb{R}P^4$.
- (2) Describe the attaching maps of cells in (1).

[3] Let X be a vector field on $\mathbb{R}P^2$ which is described by

$$X=u\frac{\partial}{\partial u}+2v\frac{\partial}{\partial v},$$

on the open local coordinate chart $U_0 = \{[1; u, v] \in \mathbb{R}P^2 \mid u, v \in \mathbb{R}\}$. Find the expression of X on other local coordinate charts $U_1 = \{[x; 1; y] \in \mathbb{R}P^2\}$ and $U_2 = \{[s; t; 1] \in \mathbb{R}P^2\}$, and identify points of $\mathbb{R}P^2$ where X vanishes.

[4] On $M = \mathbb{R}^3 - \{z\text{-axis}\}$, consider vector fields X, Y given as follows.

$$X = (x - 2y)\frac{\partial}{\partial x} + (2x + y)\frac{\partial}{\partial y} + x\frac{\partial}{\partial z}, \qquad Y = x\frac{\partial}{\partial y} - y\frac{\partial}{\partial x}.$$

- (1) Show that X, Y define an involutive rank 2 distribution D on M.
- (2) Compute and describe all the integral submanifolds of D.

[5] A one-form α on the plane \mathbb{R}^2 has the property that $\int_I \alpha = 0$ for all line segments I which have one endpoint at the origin.

- (1) Find the general algebraic expression for any such α in terms of x, y, dx and dy
- (2) Suppose that in addition $\int_{S^1(r)} \alpha = \pi r$ where $S^1(r)$ denotes the circle centered at the origin with radius r oriented counterclockwise. Now find the general expression for all such α .

[6] Let T^2 be the standard two-torus with angular coordinates θ^1, θ^2 .

- (1) Describe what is meant by a closed curve c in t^2 having (2,3) winding. Also draw a picture of such a c on the "flat torus" model of T^2 .
- (2) Find a closed one-form α having $\int_c \alpha = 0$ and $\int_{e_1} \alpha = 1$ where c is as in (1) and e_1 is a closed curve with (1,0) winding. Express your form in terms of $d\theta_1$ and $d\theta_2$.
- (3) Is your form α unique? If 'yes', prove it. If 'no' describe the ambiguities i.e. the set of all such α .

[7] A smooth function f on a Riemannian manifold satisfies $\|\nabla f\|=1$ everywhere

(1) Use the relation induced between df and ∇f by the Riemannian metric to derive an inequality between $df_p(v_p)$, and $||v_p||$ valid for all $p \in M$ and all vectors $v_p \in T_pM$. State a necessary and sufficient condition for your inequality to become an equality.

1

- (2) Use (1) to prove that the integral curves of ∇f are geodesics.
- (3) When $M = \mathbb{R}^n$ with its Euclidean metric, describe ∇f 's integral curves.