GEOMETRY AND TOPOLOGY PRELIMINARY EXAM

Winter 2021

[1] Let X be the 2 -sphere with a whisker connecting the north pole to the south pole. Compute the fundamental group and the homology groups of X.
[2] Consider the real projective space $\mathbb{R} P^{4}$.
(1) Describe a cell structure of $\mathbb{R} P^{4}$.
(2) Describe the attaching maps of cells in (1).
[3] Let X be a vector field on $\mathbb{R} P^{2}$ which is described by

$$
X=u \frac{\partial}{\partial u}+2 v \frac{\partial}{\partial v}
$$

on the open local coordinate chart $U_{0}=\left\{[1 ; u, v] \in \mathbb{R} P^{2} \mid u, v \in \mathbb{R}\right\}$. Find the expression of X on other local coordinate charts $U_{1}=\left\{[x ; 1 ; y] \in \mathbb{R} P^{2}\right\}$ and $U_{2}=\left\{[s ; t ; 1] \in \mathbb{R} P^{2}\right\}$, and identify points of $\mathbb{R} P^{2}$ where X vanishes.
[4] On $M=\mathbb{R}^{3}-\{z$-axis $\}$, consider vector fields X, Y given as follows.

$$
X=(x-2 y) \frac{\partial}{\partial x}+(2 x+y) \frac{\partial}{\partial y}+x \frac{\partial}{\partial z}, \quad Y=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x} .
$$

(1) Show that X, Y define an involutive rank 2 distribution D on M.
(2) Compute and describe all the integral submanifolds of D.
[5] A one-form α on the plane \mathbb{R}^{2} has the property that $\int_{I} \alpha=0$ for all line segments I which have one endpoint at the origin.
(1) Find the general algebraic expression for any such α in terms of $x, y, d x$ and $d y$
(2) Suppose that in addition $\int_{S^{1}(r)} \alpha=\pi r$ where $S^{1}(r)$ denotes the circle centered at the origin with radius r oriented counterclockwise. Now find the general expression for all such α.
[6] Let T^{2} be the standard two-torus with angular coordinates θ^{1}, θ^{2}.
(1) Describe what is meant by a closed curve c in t^{2} having $(2,3)$ winding. Also draw a picture of such a c on the "flat torus" model of T^{2}.
(2) Find a closed one-form α having $\int_{c} \alpha=0$ and $\int_{e_{1}} \alpha=1$ where c is as in (1) and e_{1} is a closed curve with $(1,0)$ winding. Express your form in terms of $d \theta_{1}$ and $d \theta_{2}$.
(3) Is your form α unique? If 'yes', prove it. If 'no' describe the ambiguities - i.e. the set of all such α.
[7] A smooth function f on a Riemannian manifold satisfies $\|\nabla f\|=1$ everywhere
(1) Use the relation induced between $d f$ and ∇f by the Riemannian metric to derive an inequality between $d f_{p}\left(v_{p}\right)$, and $\left\|v_{p}\right\|$ valid for all $p \in M$ and all vectors $v_{p} \in T_{p} M$. State a necessary and sufficient condition for your inequality to become an equality.
(2) Use (1) to prove that the integral curves of ∇f are geodesics.
(3) When $M=\mathbb{R}^{n}$ with its Euclidean metric, describe ∇f 's integral curves.

