$$\int_X f^* \omega = \int_X (h \circ J)^* \omega = \int_X J^* h^* \omega.$$ $_{AS}h^*\omega$ is supported in U, the lemma implies $$\int_X f^*(h^*\omega) = \deg(f) \int_Y h^*\omega.$$ Finally, the diffeomorphism h is orientation preserving; for h implies deg (h) = +1. Thus the change of variables property gives $$\int_{Y}h^{*}\omega=\int_{Y}\omega,$$ and $$\int_{X} f^* \omega = \deg(f) \int_{Y} \omega,$$ as claimed. ## **EXERCISES** 1. Check that the 1-form d arg in $\mathbb{R}^2 - \{0\}$ is just the form $$\frac{-y}{x^2+y^2}\,dx+\frac{y}{x^2+y^2}\,dy$$ 192 SCKE eve ave iom CLS discussed in earlier exercises. [HINT: $\theta = \arctan(y/x)$.] (This form is discussed in earlier denoted $d\theta$.) In particular, you have already shown that d arg is closed but not exact. Let γ be a smooth closed curve in ${\bf R}^2-\{0\}$ and ω any closed 1-form on $\mathbb{R}^2 - \{0\}$. Prove that $$\oint_{\gamma} \omega = W(\gamma, 0) \int_{S^1} \omega,$$ where $W(\gamma, 0)$ is the winding number of γ with respect to the origin $W(\gamma, O)$ is defined just like $W_2(\gamma, O)$, but using degree rather than degree mod 2; that is, $W(\gamma, O) = \deg(\gamma/|\gamma|)$. In particular, conclude that $$W(\gamma,0)=\frac{1}{2\pi}\oint_{\gamma}d\arg.$$ 3. We can easily define complex valued forms on X. The forms we have used heretofore are real forms. Create imaginary p-forms by multiplying any real form by $i = \sqrt{-1}$. Then complex forms are sums $\omega_1 + i\omega_2$, where ω_1 and ω_2 are real. Wedge product extends in the obvious way, and d and \int are defined to commute with multiplication by i: $$d\omega = d\omega_1 + i d\omega_2, \qquad \int_X \omega = \int_X \omega_1 + i \int_X \omega_2.$$ Stokes theorem is valid for complex forms, for it is valid for their real and imaginary parts. We can now use our apparatus to prove a fundamental theorem in complex variable theory: the Cauchy Integral Formula. - (a) Let z be the standard complex coordinate function on $C = R^2$. Check that dz = dx + i dy. - (b) Let f(z) be a complex valued function on an open subset U of C. Prove that the 1-form f(z) dz is closed if and only if f(z) = f(x, y)satisfies the Cauchy-Riemann equation $$\frac{\partial f}{\partial y} = i \frac{\partial f}{\partial x}.$$ Express f in terms of its real and imaginary parts $f = f_1 + if_2$, and show that the Cauchy-Riemann equation is actually two real equa- - tions. If f(z) dz is closed, the function f is called holomorphic in U. (c) Show that the product of two holomorphic functions is holomor- - (d) Check that the complex coordinate function z is holomorphic. Conclude that every complex polynomial is holomorphic. Integration and Mapp (e) Suppose that closed curves [HINT: Use (f) if f is hole $\oint_{\gamma} f(z) dz =$ (g) Prove that plane C - (h) Let C, be by direct (i) Suppose of radius > [HINT: |f(z)|and us (j) Prove y is a [HIN] Construc compact stereogra (a) Prov [HIP (b) Cor §8 Integration and Mappings (e) Suppose that f is holomorphic in U and γ_1, γ_2 are two homotopic lead curves in U. Prove that closed curves in U. Prove that $$\oint_{\gamma_1} f(z) dz = \oint_{\gamma_2} f(z) dz.$$ [HINT: Use Exercise 9, Section 7.] - (f) If f is holomorphic in a simply connected region U, show that $\oint_{\gamma} f(z) dz = 0$ for every closed curve γ in U. [HINT: Part (e).] - (g) Prove that the function f(z) = 1/z is holomorphic in the punctured plane $\mathbb{C} - \{0\}$. Similarly, 1/(z-a) is holomorphic in $\mathbb{C} - \{a\}$. - (h) Let C_r be a circle of radius r around the point $a \in \mathbb{C}$. Prove that $$\int_{C} \frac{1}{z-a} dz = 2\pi i,$$ (i) Suppose that f(z) is a holomorphic function in U and C_r is the circle of radius r around $a \in U$. Prove that $$\int_{C} \frac{f(z)}{z-a} dz = 2\pi i \cdot f(a).$$ [HINT: By part (e), this does not depend on r. Note that $|f(z)-f(a)|<\epsilon_r$ on C_r , where $\epsilon_r\to 0$ as $r\to 0$. So let $r\to 0$ and use a simple continuity argument.] (j) Prove the Cauchy Integral Formula: If f is holomorphic in U and γ is a closed curve in U not passing through $a \in U$, then $$\frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z-a} dz = W(\gamma, a) \cdot f(a).$$ [HINT: Use part (i) and Exercise 2.] - Construct a k-form on S^k with nonzero integral. [HINT: Construct a compactly supported k-form in \mathbf{R}^k with nonzero integral, and project stereographically.] - (a) Prove that a closed k-form ω on S^k is exact if and only if $\int_{S^k} \omega = 0$. [HINT: dim $H^k(S^k) = 1$. Now use previous exercise.] - (b) Conclude that the linear map $\int_{S^k} : H^k(S^k) \to \mathbb{R}$ is an isomorphism. - 6. Prove that a compactly supported k-form ω on \mathbb{R}^k is the exterior deriva -tive of a compactly supported k-1 form if and only if $\int_{\mathbb{R}^k} \omega = 0$. [Hint: Use stereographic projection to carry ω to a form ω' on S^k . By Exercise 5, $\omega' = dv$. Now dv is zero in a contractible neighborhood U of the north pole N. Use this to find a k-2 form μ on S^k such that $v = d\mu$ near N. Then $v d\mu$ is zero near N, so it pulls back to a compactly supported form on \mathbb{R}^k .] - 7. Show that on any compact oriented k-dimensional manifold X, the linear map $\int_X : H^k(X) \to \mathbb{R}$ is an isomorphism. In particular, show dim $H^k(X) = 1$. [HINT: Let U be an open set diffeomorphic to \mathbb{R}^k , and let ω be a k-form compactly supported in U with $\int_X \omega = 1$. Use Exercise 6 to show that every compactly supported form in U is cohomologous to a scalar multiple of ω . Now choose open sets U_1, \ldots, U_N covering X, each of which is deformable into U by a smooth isotopy. Use Exercise 7 of Section 6 and a partition of unity to show that any k-form θ on X is cohomologous to $c\omega$ for some $c \in \mathbb{R}$. Indentify c.] - 8. Let $f: X \to Y$ be a smooth map of compact oriented k-manifolds. Consider the induced map on the top cohomology groups, $f^*: H^k(Y) \to H^k(X)$. Integration provides canonical isomorphisms of both $H^k(Y)$ and $H^k(X)$ with \mathbb{R} , so under these isomorphisms the linear map f^* must correspond to multiplication by some scalar. Prove that this scalar is the degree of f. In other words, the following square commutes: ## §9 The Gauss-Bonnet Theorem We begin this section with a discussion of volume. Suppose that X is a compact oriented k-dimensional manifold in \mathbb{R}^N . For each point $x \in X$, let $v_X(x)$ be the volume element on $T_x(X)$, the alternating k-tensor that has value 1/k! on each positively oriented orthonormal basis for $T_x(X)$. (See Exercise 10, Section2.) It is not hard to show that the k-form v_X on X is smooth; it is called the *volume form* of X. For example, the volume form on