$$\int_X f^* \omega = \int_X (h \circ J)^* \omega = \int_X J^* h^* \omega.$$

 $_{AS}h^*\omega$  is supported in U, the lemma implies

$$\int_X f^*(h^*\omega) = \deg(f) \int_Y h^*\omega.$$

Finally, the diffeomorphism h is orientation preserving; for h implies deg (h) = +1. Thus the change of variables property gives

$$\int_{Y}h^{*}\omega=\int_{Y}\omega,$$

and

$$\int_{X} f^* \omega = \deg(f) \int_{Y} \omega,$$

as claimed.

## **EXERCISES**

1. Check that the 1-form d arg in  $\mathbb{R}^2 - \{0\}$  is just the form

$$\frac{-y}{x^2+y^2}\,dx+\frac{y}{x^2+y^2}\,dy$$

192

SCKE

eve

ave

iom

CLS

discussed in earlier exercises. [HINT:  $\theta = \arctan(y/x)$ .] (This form is discussed in earlier denoted  $d\theta$ .) In particular, you have already shown that d arg is closed but not exact.

Let  $\gamma$  be a smooth closed curve in  ${\bf R}^2-\{0\}$  and  $\omega$  any closed 1-form on  $\mathbb{R}^2 - \{0\}$ . Prove that

$$\oint_{\gamma} \omega = W(\gamma, 0) \int_{S^1} \omega,$$

where  $W(\gamma, 0)$  is the winding number of  $\gamma$  with respect to the origin  $W(\gamma, O)$  is defined just like  $W_2(\gamma, O)$ , but using degree rather than degree mod 2; that is,  $W(\gamma, O) = \deg(\gamma/|\gamma|)$ . In particular, conclude that

$$W(\gamma,0)=\frac{1}{2\pi}\oint_{\gamma}d\arg.$$

3. We can easily define complex valued forms on X. The forms we have used heretofore are real forms. Create imaginary p-forms by multiplying any real form by  $i = \sqrt{-1}$ . Then complex forms are sums  $\omega_1 + i\omega_2$ , where  $\omega_1$  and  $\omega_2$  are real. Wedge product extends in the obvious way, and d and  $\int$  are defined to commute with multiplication by i:

$$d\omega = d\omega_1 + i d\omega_2, \qquad \int_X \omega = \int_X \omega_1 + i \int_X \omega_2.$$

Stokes theorem is valid for complex forms, for it is valid for their real and imaginary parts. We can now use our apparatus to prove a fundamental theorem in complex variable theory: the Cauchy Integral Formula.

- (a) Let z be the standard complex coordinate function on  $C = R^2$ . Check that dz = dx + i dy.
- (b) Let f(z) be a complex valued function on an open subset U of C. Prove that the 1-form f(z) dz is closed if and only if f(z) = f(x, y)satisfies the Cauchy-Riemann equation

$$\frac{\partial f}{\partial y} = i \frac{\partial f}{\partial x}.$$

Express f in terms of its real and imaginary parts  $f = f_1 + if_2$ , and show that the Cauchy-Riemann equation is actually two real equa-

- tions. If f(z) dz is closed, the function f is called holomorphic in U. (c) Show that the product of two holomorphic functions is holomor-
- (d) Check that the complex coordinate function z is holomorphic. Conclude that every complex polynomial is holomorphic.

Integration and Mapp

(e) Suppose that closed curves

[HINT: Use (f) if f is hole

 $\oint_{\gamma} f(z) dz =$ 

(g) Prove that plane C -

(h) Let C, be

by direct

(i) Suppose of radius

> [HINT: |f(z)|and us

(j) Prove y is a

[HIN]

Construc compact stereogra

(a) Prov [HIP

(b) Cor

§8 Integration and Mappings (e) Suppose that f is holomorphic in U and  $\gamma_1, \gamma_2$  are two homotopic lead curves in U. Prove that closed curves in U. Prove that

$$\oint_{\gamma_1} f(z) dz = \oint_{\gamma_2} f(z) dz.$$

[HINT: Use Exercise 9, Section 7.]

- (f) If f is holomorphic in a simply connected region U, show that  $\oint_{\gamma} f(z) dz = 0$  for every closed curve  $\gamma$  in U. [HINT: Part (e).]
- (g) Prove that the function f(z) = 1/z is holomorphic in the punctured plane  $\mathbb{C} - \{0\}$ . Similarly, 1/(z-a) is holomorphic in  $\mathbb{C} - \{a\}$ .
- (h) Let  $C_r$  be a circle of radius r around the point  $a \in \mathbb{C}$ . Prove that

$$\int_{C} \frac{1}{z-a} dz = 2\pi i,$$

(i) Suppose that f(z) is a holomorphic function in U and  $C_r$  is the circle of radius r around  $a \in U$ . Prove that

$$\int_{C} \frac{f(z)}{z-a} dz = 2\pi i \cdot f(a).$$

[HINT: By part (e), this does not depend on r. Note that  $|f(z)-f(a)|<\epsilon_r$  on  $C_r$ , where  $\epsilon_r\to 0$  as  $r\to 0$ . So let  $r\to 0$ and use a simple continuity argument.]

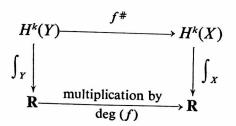
(j) Prove the Cauchy Integral Formula: If f is holomorphic in U and  $\gamma$  is a closed curve in U not passing through  $a \in U$ , then

$$\frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{z-a} dz = W(\gamma, a) \cdot f(a).$$

[HINT: Use part (i) and Exercise 2.]

- Construct a k-form on  $S^k$  with nonzero integral. [HINT: Construct a compactly supported k-form in  $\mathbf{R}^k$  with nonzero integral, and project stereographically.]
  - (a) Prove that a closed k-form  $\omega$  on  $S^k$  is exact if and only if  $\int_{S^k} \omega = 0$ . [HINT: dim  $H^k(S^k) = 1$ . Now use previous exercise.]
    - (b) Conclude that the linear map  $\int_{S^k} : H^k(S^k) \to \mathbb{R}$  is an isomorphism.

- 6. Prove that a compactly supported k-form  $\omega$  on  $\mathbb{R}^k$  is the exterior  $\operatorname{deriva}$ -tive of a compactly supported k-1 form if and only if  $\int_{\mathbb{R}^k} \omega = 0$ . [Hint: Use stereographic projection to carry  $\omega$  to a form  $\omega'$  on  $S^k$ . By Exercise 5,  $\omega' = dv$ . Now dv is zero in a contractible neighborhood U of the north pole N. Use this to find a k-2 form  $\mu$  on  $S^k$  such that  $v = d\mu$  near N. Then  $v d\mu$  is zero near N, so it pulls back to a compactly supported form on  $\mathbb{R}^k$ .]
- 7. Show that on any compact oriented k-dimensional manifold X, the linear map  $\int_X : H^k(X) \to \mathbb{R}$  is an isomorphism. In particular, show dim  $H^k(X) = 1$ . [HINT: Let U be an open set diffeomorphic to  $\mathbb{R}^k$ , and let  $\omega$  be a k-form compactly supported in U with  $\int_X \omega = 1$ . Use Exercise 6 to show that every compactly supported form in U is cohomologous to a scalar multiple of  $\omega$ . Now choose open sets  $U_1, \ldots, U_N$  covering X, each of which is deformable into U by a smooth isotopy. Use Exercise 7 of Section 6 and a partition of unity to show that any k-form  $\theta$  on X is cohomologous to  $c\omega$  for some  $c \in \mathbb{R}$ . Indentify c.]
- 8. Let  $f: X \to Y$  be a smooth map of compact oriented k-manifolds. Consider the induced map on the top cohomology groups,  $f^*: H^k(Y) \to H^k(X)$ . Integration provides canonical isomorphisms of both  $H^k(Y)$  and  $H^k(X)$  with  $\mathbb{R}$ , so under these isomorphisms the linear map  $f^*$  must correspond to multiplication by some scalar. Prove that this scalar is the degree of f. In other words, the following square commutes:



## §9 The Gauss-Bonnet Theorem

We begin this section with a discussion of volume. Suppose that X is a compact oriented k-dimensional manifold in  $\mathbb{R}^N$ . For each point  $x \in X$ , let  $v_X(x)$  be the volume element on  $T_x(X)$ , the alternating k-tensor that has value 1/k! on each positively oriented orthonormal basis for  $T_x(X)$ . (See Exercise 10, Section2.) It is not hard to show that the k-form  $v_X$  on X is smooth; it is called the *volume form* of X. For example, the volume form on