EXERCISES - 1. Show that Stokes theorem for a closed interval [a, b] in \mathbb{R}^1 is just the Fundamental Theorem of Calculus. (See Exercise 1, Section 4.) - 2. Prove the classical Green's formula in the plane: let W be a compact domain in \mathbb{R}^2 with smooth boundary $\partial W = \gamma$. Prove $$\int_{\gamma} f \, dx + g \, dy = \int_{w} \left(\frac{\partial g}{\partial x} - \frac{\partial f}{\partial y} \right) dx \, dy.$$ 3. Prove the Divergence Theorem: let W be a compact domain in \mathbb{R}^3 with smooth boundary, and let $\vec{F} = (f_1, f_2, f_3)$ be a smooth vector field on W. Then $$\int_{W} (\operatorname{div} \vec{F}) \, dx \, dy \, dz = \int_{\partial W} (\vec{n} \cdot \vec{F}) \, dA.$$ (Here \vec{n} is the outward normal to ∂W . See Exercises 13 and 14 of Section 4 for dA, and page 178 for div \vec{F} .) 4. Prove the classical Stokes theorem: let S be a compact oriented two-manifold in \mathbb{R}^3 with boundary, and let $\vec{F} = (f_1, f_2, f_3)$ be a smooth vector field in a neighborhood of S. Prove $$\int_{\mathcal{S}} (\operatorname{curl} \vec{F} \cdot \vec{n}) dA = \int_{\partial S} f_1 dx_1 + f_2 dx_2 + f_3 dx_3.$$ (Here \vec{n} is the outward normal to S. For dA, see Exercises 13 and 14 of Section 4, and for curl \vec{F} , see page 178.) 5. The Divergence Theorem has an interesting interpretation in fluid dynamics. Let D be a compact domain in \mathbb{R}^3 with a smooth boundary $S = \partial D$. We assume that D is filled with an incompressible fluid whose density at x is $\rho(x)$ and whose velocity is $\hat{v}(x)$. The quantity $$\int_{S} \rho(\vec{v} \cdot \vec{n}) \, dA$$ measures the amount of fluid flowing out of S at any fixed time. If $x \in D$ and B_{ϵ} is the ball of radius ϵ about x, the "infinitesimal amount" of fluid being added to D at x at any fixed time is (*) $$\lim_{\epsilon \to 0} \int_{\partial B\epsilon} \frac{\rho(\vec{v} \cdot \vec{n}) \, dA}{\operatorname{vol}(B_{\epsilon})}.$$ Show that $(*) = \operatorname{div} \rho \vec{v}$, and deduce from the Divergence Theorem that the amount of fluid flowing out of D at any fixed time equals the amount being added. 6. The Divergence Theorem is also useful in electrostatics. Let D be a compact region in \mathbb{R}^3 with a smooth boundary S. Assume $0 \in \text{Int } (D)$. If an electric charge of magnitude q is placed at 0, the resulting force field is $q\vec{r}/r^3$, where $\vec{r}(x)$ is the vector to a point x from 0 and r(x) is its magnitude. Show that the amount of charge q can be determined from the force on the boundary by proving Gauss's law: $$\int_{S} \vec{F} \cdot \vec{n} \, dA = 4\pi q.$$ [HINT: Apply the Divergence Theorem to a region consisting of D minus a small ball around the origin.] - *7. Let X be compact and boundaryless, and let ω be an exact k-form on X, where $k = \dim X$. Prove that $\int_X \omega = 0$. [HINT: Apply Stokes theorem. Remember that X is a manifold with boundary, even though ∂X is empty.] - *8. Suppose that $X = \partial W$, W is compact, and $f: X \to Y$ is a smooth map. Let ω be a closed k-form on Y, where $k = \dim X$. Prove that if f extends to all of W, then $\int_X f^* \omega = 0$. - *9. Suppose that $f_0, f_1: X \to Y$ are homotopic maps and that the compact, boundaryless manifold X has dimension k. Prove that for all closed k- §7 Stokes The [HINT: - 10. Show 1 closed exercis - 11. Prove exact. - 12. Conclu - 13. Suppo manifo for ev 14. (a) Si (b) C (c) S1 b (d) Sl ar forms w on Y, $$\int_X f_0^* \omega = \int_X f_1^* \omega.$$ [HINT: Previous exercise.] - Show that if X is a simply connected manifold, then $\oint \omega = 0$ for all closed 1-forms ω on X and all closed curves γ in X. [HINT: Previous exercise.] - 11. Prove that if X is simply connected, then all closed 1-forms ω on X are exact. (See Exercise 11, Section 4.) - 12. Conclude from Exercise 11 that $H^1(S^k) = 0$ if k > 1. - 13. Suppose that Z_0 and Z_1 are compact, cobordant, p-dimensional submanifolds of X. Prove that $$\int_{z_0} \omega = \int_{z_1} \omega$$ for every closed p-form ω on X. (a) Suppose that ω_1 and ω_2 are cohomologous p-forms on X, and Z is a compact oriented p-dimensional submanifold. Prove that $$\int_{\mathcal{Z}} \omega_1 = \int_{\mathcal{Z}} \omega_2.$$ (b) Conclude that integration over Z defines a map of the cohomology group $H^p(X)$ into **R**, which we denote by $$\int_{\mathcal{Z}}: H^p(X) \longrightarrow \mathbf{R}.$$ Check that \int_{Z} is a linear functional on $H^{p}(X)$. - (c) Suppose that Z bounds; specifically, assume that Z is the boundary suppose that Z boundary of some compact oriented p+1 dimensional submanifold-withboundary in X. Show that \int_{Z} is zero on $H^{p}(X)$. - (d) Show that if the two compact oriented manifolds Z_1 and Z_2 in Xare cobordant, then the two linear functionals \int_{z_1} and \int_{z_2} are equal.