cohomology classes on X; that is, f^* defines a mapping $f^*: H^p(Y) \to H^p(X)$. Since f^* is linear, you can easily check that f^* is linear. (Remember that f^* pulls back: i.e., when $f: X \longrightarrow Y$, then $f^{\#}: H^{p}(Y) \longrightarrow H^{p}(X)$.)

The numbered statements in the following discussion are for you to prove.

1. If $X \xrightarrow{f} Y \xrightarrow{g} Z$, then $(g \circ f)^{\#} = f^{\#} \circ g^{\#}$.

In some simple cases, we can easily compute $H^p(X)$. For example, $H^p(X) = 0$ for all $p > \dim X$. The next easiest case is

2. The dimension of $H^0(X)$ equals the number of connected components in X. [HINT: There are no exact zero forms. Show that a zero form—that $\sqrt{}$ is, a function—is closed if and only if it is constant on each component of X.

In obtaining information about other cohomology groups, we shall define an operator P on forms. Just like the operators d and \int , P is first defined

SEEDIM HIDRY

$$P\omega(t,x) = \sum_{I} \left[\int_{0}^{t} f_{I}(s,x) ds \right] dx_{I}.$$

Notice that $P\omega$ does not involve a dt term.

Now let $\phi: V \to U$ be a diffeomorphism of open subsets of \mathbb{R}^k , and let $\Phi: \mathbf{R} \times V \longrightarrow \mathbf{R} \times U$ be the diffeomorphism $\Phi = \text{identity} \times \phi$. Prove the essential transformation property

 $\Phi^*P\omega=P\Phi^*\omega$. [HINT: This is not difficult if you avoid writing everything in coordinates. Just note that $\Phi^* dt = dt$ and that Φ^* converts each of the two sums in the expression (1) for ω into sums of the same type.]

Now copy the arguments used to put d and \int on manifolds to prove

- There exists a unique operator P, defined for all manifolds X, that transforms p-forms on ${\bf R} \times X$ into p-1 forms on ${\bf R} \times X$ and that satisfies the following two requirements:
 - (1) If $\phi: X \to Y$ is a diffeomorphism, and $\Phi = \text{identity} \times \phi$, then $\Phi^* \circ P = P \circ \Phi^*$.
 - (2) If X is an open subset of \mathbb{R}^k , P is as defined above.

The main attraction of this operator is the following marvelous formula. (No doubt it appears anything but marvelous at first, but wait!)

Let $\pi: \mathbb{R} \times X \longrightarrow X$ be the usual projection operator and $i_a: X \longrightarrow \mathbb{R} \times X$ be any embedding $x \longrightarrow (a, x)$. Then

$$dP\omega + Pd\omega = \omega - \pi^*i_a^*\omega.$$

[HINT: Essentially this is a question of unraveling notation. For example, if ω is expressed by the sum (1), then $\pi^*i_a^*\omega = \sum_J g_J(x,a) dx_J$ Say w= q(x,t) 10 .01 .- D 11- ((5x)) = q(+,x)-g(0)

The first important consequences

6. (Poincaré Lemma) The maps

$$i_a^\#: H^p(\mathbf{R} \times X) \longrightarrow H^p(X)$$
 and $\pi^\#: H^p(X) \longrightarrow H^p(\mathbf{R} \times X)$

are inverses of each other. In particular, $H^p(\mathbf{R} \times X)$ is isomorphic to

[HINT: $\pi \circ i_a = \text{identity}$, so Exercise 1 implies $i_a^{\#} \circ \pi^{\#} = \text{identity}$. For $\pi^{\#} \circ i_a^{\#}$, interpret Exercise 5 for closed forms ω .]

Take X to be a single point, so $H^p(X) = 0$ if p > 0. Now the Poincaré lemma implies by induction:

Corollary. $H^p(\mathbb{R}^k) = 0$ if k > 0; that is, every closed p-form on \mathbb{R}^k is exact if p > 0.

A slightly more subtle consequence is

7. If $f,g:X\to Y$ are homotopic maps, then $f^\#=g^\#$. [HINT: Let $H:\mathbf{R}\times X\to Y$ be a smooth map such that H(a,x)=f(x) and H(b,x)=g(x). Then

$$f^\#=i_a^\#\circ H^\#$$
 and $g^\#=i_b^\#\circ H^\#.$

But it is clear from Exercise 6 that $i_a^{\#} = i_b^{\#}$.]

Now strengthen the corollary to Exercise 6 by proving

8. If X is contractible, then $H^p(X) = 0$ for all p > 0.

We conclude this section with one deeper result.

Theorem. $H^p(S^k)$ is one dimensional for p = 0 and p = k. For all other p, $H^p(S^k) = 0 \ (k > 0)$.