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rem. If A1 V— V is a linear map, then A*T =

Determinant Theo L ) :
(det A)T for every T € AX V), where k = dlm V. In particular, if ¢,, ... |

b € AV, then

A*py N - A A*G, = (et Db Ao N\ b

EXERCISES

AP(V¥) and v4,..-5% € V are linearly dependent.

1. Suppose that T e
Prove that T(¥1s - - > v,) =0 forall T € A?P(V#).

2. Dually, suppose€ that @y, - - $, € y* are linearly dependent, and

prove that ¢; /A =+~ A ¢, =0

0 € v*and vy, ...> VU € v, where k = dim 7,

3. Suppose that dy - -
Prove that

PR ANR A @u(V15. oo V) = 'kl" det [¢i('vj)],

where [¢:(v))] is & k X k real matrix. [HINT: If the ¢; are dependent,
then the matrix has linearly dependent rows, SO Exercise 2 suffices. If
not, the formula is easily checked for the dual basis in V. Now verify
that the matrix does specify an alternating k-tensor on V, and use

dim A*(V*) = 1]

4. More generally, show that whenever biy..sPp € V¥andvy,....0
e V, then

PRI NS B % det [.(2))].

[HINT: If_‘ tl'le v, are dependent, use Exercise 1. If not, apply Exercise 310
the restrictions @, of @, to the p-dimensional subspace spanned by ¥,

s U,
5. Specifically write out Alt (§, ® ¢, @ ¢;) for ¢,,¢,.6; € V*.

*

6. (a) tl‘,;:(t) ](; :)gez; lllortl)zero element of A*(V*), where dim V' = k. Prove that
e €8 Daaes Wio a.'vk} and {v,,..., v} for V are equiva-
;nt y orler.lted if and only if T(v,, ..., ,) and T(¥, ... v,,) have

) tSue sz:)me Slllgn. [I‘.IINT:_ Determinant theorem.]
Sp:g)e IS\ek(tVit Vis f)rlented. Show that the one-dimensional vec!”
2 nonzer ele): acquires a natural orientation, by defining the sigh°
— ment T' € A*(V*) to be the sign of T(v;, . - - , ) fOF
Y positively oriented ordered basis {v,, . . . , v;} for V.
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*10.

*11.

12,

(c) C(_mvers.ely, show that an orientation of A*(V'*) naturally defines an
orientation on V by reversing the above.

Fora k X k matr.ix A, let A* denote the transpose matrix. Using the
fact that det (4) is multilinear in both the rows and columns of A
prove that det (47) = det (4). [HINT: Use dim A*(R**) — 1] ’

Recall that a matrix A is orthogonal if AA* = 1. C e
orthogonal, det (4) = 1. . Conclude that if 4 is

Let V be a k-dimensional subspace of R". Recall that a basis
vy, ..., V% of Vis orthonormal if

’Ui-tvj — {1, i == j
0, %]
Let A: V‘—> V be a linear map, and prove the following three condi-
tions equivalent:
(a) Av-Aw =v-wforall v,w € V.
(b) A carries .orthonormal bases to orthonormal bases.
(c) The matrix of 4 with respect to any orthonormal basis is orthog-
onal. :
Such an 4 is called an orthogonal transformation. [Note, by (b), it must

be an isomorphism.]

(a) Let V be an oriented k-dimensional vector subspace of R". Prove
there is an alternating k-tensor T' € A*(V*)such that T'(v,,...,v) =
1/k! for all positively oriented ordered orthonormal bases. Fur-
thermore, show that T is unique; it is called the volume element
of V. [HINT: Use the determinant theorem, Exercises 8 and 9, plus
dim A*(V'*) = 1 for uniqueness.]

(b) In fact, suppose that ¢;,...,d. € V* isan ordered basis dual to
some positively oriented ordered orthonormal basis for V. Show that

the volume element for Vis ¢; A -+ A ¢ [HINT: Exercise 3.]

Let T be the volume element of R2. Prove that for any vectors v,,0; €
R?, T(v,, v,) is & one half the volume of the parallelogram sparined by
v, and v,. Furthermore, when v, and v, are independent, then the sign
equals the sign of the ordered basis {v;, v,} in the standard orientation
of R% Generalize to R3. Now how would you define the volume of a

parallelepiped in R*?

RY. For each v € V, define a linear function-

(a) Let V' be a subspace of
v— ¢, Is an

al ¢, € V* by ¢,(w) =v-w. Prove that the map
isomorphism of ¥ with V*.
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(b) Now suppose that Vis oriented and dim V. = 3. Let Tbe the volume
element on V. Given u,v € V, define a linear functional on ¥ by
w — 3!T(u, v, w). By part (a), there exists a vector, which we denote
u X v, such that T(u, v, w) = (u X v)-w for all w € V. Prove that
this cross product satisfies u X v = —v X u. Furthermore, show
that if {v,,v,,v,} is a positively oriented orthonormal basis for v,
then v; X v, = 3,0, X ¥; =v;, and v; X v, =v,. (Also, v X
= ( always.)

83 Differential Forms

In classical differential geometry, forms were symbolic quantitie
that looked like

}Zlf}‘in
2 fiydx; A dx;
Ekf,-jk dx; N\ dx; N\ dx,.

i<j<

These expressions were integrated and differentiated, and because experien
proved anticommutativity to be convenient, they were manipulated lil
alternating tensors. Modern differential forms locally reduce to the san

symbolic quantities, but they possess the indispensable attribute of bei

globally defined on manifolds. Global definition of integrands makes possit
global integration.,

Definition. Let X be g smooth manifol
p-form on X is a function ¢ that assi
p-tensor w(x) on the tan
Two p-forms ¢, and
p-form w, + W, :

d with or without boundary.
gns to each point x € X an alternat;
gent space of X at x; eo(x) e AP[T (X)*].

@, may be added point by point to create a t

Similarly, the wedge product of forms i

p-form and @ is g-form, the p + q form o A @ is given by (w A 0)(x
(x) A 0(x). Antlcommutativity O A0 = (—1)rg N\ o follows from
analogous equation at each point

O-forms are '



