Solution, problem 1, Homework 6: Lie groups. By the "intrinsic curve method" of computing derivatives

Parts (a) and (b) ask you to show that the identity I is a regular value of the map $F(A)=A A^{T}$ when viewed as a map from the real vector space $\operatorname{End}(\mathbb{V})$ of all linear maps $\mathbb{V} \rightarrow \mathbb{V}$ onto its subspace $\operatorname{Sym}(\mathbb{V})$ the space of of symmetric operators on \mathbb{V}. (Note we have $\operatorname{End}(\mathbb{V})=\mathbb{M}_{n}$, the space of n by n real matrices, where $n=\operatorname{dim}(\mathbb{V})$. This identification requires choosing an orthonormal basis for the Euclidean vector space \mathbb{V}.)
a) Computing the derivative of F. Let $A(t)$ be a smooth curve passing through $A_{0} \in$ $\operatorname{End}(\mathbb{V})$ at time $t=0$. Write B for its time derivative at time $t=0$, thus $B=\dot{A}(0):=$ $\left.\frac{d}{d t}\right|_{t=0} A(t)$. Then, on the one hand

$$
d F_{A_{0}}(B)=\left.\frac{d}{d t}\right|_{t=0} F(A(t))
$$

While, on the other hand, because $A A^{t}$ is homogeneous quadratic in A we have that

$$
\left.\frac{d}{d t}\right|_{t=0} A(t) A(t)^{T}=A(0) \dot{A}(0)^{T}+\dot{A}(0) A(0)^{T}=A_{0} B^{T}+B A_{0}^{T}
$$

So that

$$
d F_{A_{0}}(B)=A_{0} B^{T}+B A_{0}^{T}
$$

Remark. You could also do this calculation by setting $A(t)=A_{0}+t B$, expanding out $F(A(t))=A_{0} A_{0}^{T}+t\left(A_{0} B^{T}+B A_{0}^{T}\right)+t^{2} B B^{T}$, and selecting the coefficient of the part linear in t.
b) We are to show that $d F_{A_{0}}$ is onto provided that $A_{0} A_{0}^{T}=I d$. To this end, let $S \in$ $\operatorname{Sym}(\mathbb{V})$ be an arbitrary symmetric operator on \mathbb{V}, so that $S=S^{T}$. We must show that there is a B for which $d F_{A_{0}}(B)=S$. Use that A_{0} is invertible which comes from $A_{0} A_{0}^{T}=I$. As a first try, set $B=S A_{0}$. Then

$$
d F_{A_{0}}\left(S A_{0}\right)=A_{0}\left(S A_{0}\right)^{T}+\left(S A_{0}\right) A_{0}^{T}=A_{0} A_{0}^{T} S+S A_{0} A_{0}^{T}=2 S .
$$

Oops. Not quite. $B=\frac{1}{2} S A_{0}$ does the trick.
c) In general, the inverse image $F^{-1}(c)$ of a regular value c of a smooth map is a smooth submanifold whose tangent space is the kernel of F. This kernel is constant in dimension, that dimension being the dimension of F 's domain minus the dimension of F 's range.

In (b) we showed that I is a regular value for our F. We have that $\operatorname{End}(\mathbb{V})=\operatorname{Sym}(\mathbb{V}) \oplus$ $\operatorname{Skew}(\mathbb{V})$ (direct sum) where $\operatorname{Skew}(\mathbb{V})$ is the space of skew-symmetric operators. Thus, the dimension of $O(V)$ is the dimension of the space of skew symmetric operators which is $\binom{n}{2}$. Note: $\binom{n}{2}+\binom{n+1}{2}=n^{2}$.
d) Almost finally, $d F_{I}(B)=B+B^{T}$, so that we have that $T_{I} O(n)=\operatorname{kerdF} F_{I}=\{B$: $\left.B+B^{T}=0\right\}$ is $\operatorname{Skew}(\mathbb{V})$, the space of skew symmetric operators on \mathbb{V}. This is the Lie algebra of the Lie group $O(\mathbb{V})=O(n)$

