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P (G-P, 4.2.1). Suppose that T ∈Λp(V ∗) and v1, . . . , vp ∈ V are linearly dependent. Prove
that T (v1, . . . ,vp) = 0 for all T .

A: If v1, . . . , vp are linearly dependent, then we can write one of them (after some
renaming, say v1) in terms of the others: v1 =

∑p
i=2 civi . Then

T (v1, . . . , vp) = T (
∑
i

civi ,v2, . . . , vp)

=
p∑

i=2

ci T (vi ,v2, . . . , vi , . . . , vp)︸                    ︷︷                    ︸
=−T (vi ,v2,...,vi ,...,vp)

= −
p∑

i=2

ciT (vi ,v2, . . . , vi , . . . , vp)

= −T (v1, . . . ,vp).

These are just real numbers. So T (v1, . . . , vp) = −T (v1, . . . , vp) =⇒ T (v1, . . . , vp) = 0.

P (G-P, 4.2.6*). (a) Let T be a nonzero element of Λk(V ∗), where dimV = k. Prove
that two ordered bases {v1, . . . , vk} and

{
v′1, . . . , v

′
k

}
for V are equivalently oriented iff

T (v1, . . . , vk) and T (v′1, . . . , v
′
k) have the same sign. (hint: determinant theorem)

(b) Suppose that V is oriented. Show that the one-dimensional vector space Λk(V ∗)
acquires a natural orientation, by defining the sign of a nonzero element T ∈Λk(V ∗)
to be the sign of T (v1, . . . , vk) for any positively oriented basis {v1, . . . , vk} for V .

(c) Conversely, show that an orientation of ΛK (V ∗) naturally defines an orientation on
V be reversing the above.

A: (a) Let A : V → V denote the transformation matrix between the bases {vi} and
{
v′i
}
.

So A(vi) = v′i for all i = 1, . . . , k. By the determinant theorem,

T (v′1, . . . , v
′
k) = T (A(v1), . . . ,A(vk)) = A∗T (v1, . . . , vk) = detA · T (v1, . . . , vk).

Then {vi} and
{
v′i
}

have the same orientation iff detA > 0 iff T (v1, . . . , vk) and T (v′1, . . . , v
′
k)

have the same sign, by the equation above.

(b) By (a), the sign of T (v1, . . . , vk) is the same for any positively oriented basis {vi}.
So this defines an equivalence relation on Λk(V ∗). If T and S are both nonzero in Λk(V ∗)
with the same sign, then T (v1, . . . , vk) and S(v1, . . . ,vk) have the same sign for any positively
oriented {vi}.

(c) Define a sign on V to be sgn({v1, . . . , vk}) := sgn(T (v1, . . . , vk)) for any positively ori-
ented T ∈Λk(V ∗).
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P (G-P, 4.2.10*). (a) Let V be an oriented k-dimensional vector subspace of RN . Prove
that there is an alternating k-tensor T ∈ Λk(V ∗) such that T (v1, . . . , vk) = 1/k! for
all positively oriented ordered orthonormal bases. Furthermore, show that T is
unique; it is called the volume element of V (hint: use det theorem, ex. 8, ex. 9, plus
dimΛk(V ∗) = 1 for uniqueness.)

(b) In fact, suppose that ϕ1, . . . ,ϕk ∈ V ∗ is an ordered basis dual to some positively ori-
ented ordered orthonormal basis for V . Show that the volume element for V is
ϕ1 ∧ · · · ∧ϕk. (hint: ex. 3)

A: (a) Let {v1, . . . , vk} form a positively oriented orthonormal basis for V . Let
{
v∗1, . . . , v

∗
k

}
⊂

V ∗ be its dual basis. Let T := v∗1 ∧ · · · ∧ v
∗
k.

Then for any other positively oriented othonormal basis {u1, . . . ,uk},

T (u1, . . . ,uk) = v∗1 ∧ · · · ∧ v
∗
k(u1, . . . ,uk) =

1
k!

det[v∗i (uj)].

The matrix [v∗i (uj)] is simply the change of basis transformation from{v1, . . . , vk} to {u1, . . . ,uk}.
Since both {vi} and {ui} were orthonormal bases, by ex.9, the matrix is orthogonal. By
ex.8, it has determinant ±1. The sign just depends on the basis orientation; since both
were positively oriented by choice, then the determinant is 1, and T (u1, . . . ,uk) = 1/k!.

For uniqueness, realize that v∗1 ∧ · · · ∧ v∗k = T spans ΛK (V ); ie. any other S ∈ Λk(V ) is
just a multiple of T .

(b) Didn’t read (b) before doing (a). Now I’m not sure if my argument is circular or not.
I don’t think it is. A finite dimensional space has some basis, and we showed uniqueness,
so choice of basis does not matter, and choice of order doesn’t matter as long as it’s still
positively oriented. Hopefully it checks out, but I wonder what they had in mind, because
I don’t think that was it.

P (G-P, 4.2.11*). Let T be the volume element of R2. Prove that for any vectors v1,v2 ∈
R2, T (v1,v2) is ± one half the volume of the parallelogram spanned by v1,v2. Further,
when v1 and v2 are independent, then then sign equals the sign of the ordered basis
{v1,v2} in the standard orientation of R2. Generalize to R3. Now how would you define
the volume of a parallelepiped in Rk?

A: Let ϕ1,ϕ2 ∈ Λ(R2) be the dual basis vectors to i = (1,0) and j = (0,1) respectively.
Then the volume element T = ϕ1 ∧ϕ2, and if v1 = (a,b) and v2 = (c,d), we can calculate

T (v1,v2) = ϕ1 ∧ϕ2((a,b), (c,d))

=
1
2!

det[ϕi(vj)]

=
1
2

det
(
a c
b d

)
.
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We can remind ourselves that the area of the parallelogram spanned by two vectors (a,b)
and (c,d) is precisely the determinant of the matrix they form as columns.

If v1 and v2 are linearly independent, then they form a new basis for the plane, and
the matrix [ϕi(vj)] is the change of basis from

{
vj

}
to {i,j}, the standard basis (positively

oriented). The sign of the determinant of the change of basis depends on the sign of the
ordered basis {v1,v2} with respect to the standard basis.

The volume element in Λ3(R3) is constructed similarly. Let {ϕ1,ϕ2,ϕ3} be the dual
basis to the standard basis {i,j,k} of euclidean space. Then the volume element T looks
like ϕ1 ∧ϕ2 ∧ϕ3. For any three vectors v1,v2,v3 ∈R3,

T (v1,v2,v3) =
1
3!

det[ϕi(vj)].

This looks similar to the above, except we have a 1/3! instead of a 1/2. The determinant of
the matrix is the volume of the (three-dimensional) volume of the parallelipiped formed
by v1,v2,v3. The factorial term, if we opt to keep it, represents taking 1/6 of the area.
Strictly speaking, it is the area in euclidean space enclosed by the pyramid formed by
three adjacent vertices (ie. a solid pyramid sitting in one corner of our paralleliped).

In n dimensions, we can define the volume of an n-parallelipiped simply as det[ϕi(vj)],
where {ϕi}ni=1 are the dual basis to the standard basis.
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