MATH 201 HOMEWORK 1

BRANDON OWENS

Exercise 4.1.3:[G-P] Let $c:[a, b] \rightarrow X$ be a smooth curve, and let $c(a)=p$ and $c(b)=q$. Show that if ω is the differential of a function on $X, \omega=d f$, then

$$
\int_{a}^{b} c^{*} \omega=f(q)-f(p) .
$$

Proof. By hypothesis, we have $\omega=d f$ for some function f on X. Then since pullbacks commute with the derivative, one has

$$
c^{*} \omega=c^{*}(d f)=d\left(c^{*} f\right)=d(f \circ c) .
$$

Then by the fundamental theorem of calculus, one must have

$$
\int_{a}^{b} c^{*} \omega=\int_{a}^{b} d(f \circ c)=f(c(b))-f(c(a))=f(q)-f(p)
$$

as desired.
Exercise 4.2.1:[G-P] Suppose that $T \in \Lambda^{p}\left(V^{*}\right)$ and v_{1}, \ldots, v_{p} are linearly dependent. Prove that $T\left(v_{1}, \ldots, v_{p}\right)=0$ for all $T \in \Lambda^{p}\left(V^{*}\right)$.

Proof. Pick any $T \in \Lambda^{p}\left(V^{*}\right)$. If v_{1}, \ldots, v_{p} are linearly dependent, then there exist constants a_{1}, \ldots, a_{p}, not all of which are zero, such that $a_{1} v_{1}+\cdots+a_{p} v_{p}=0$. Without loss of generality, we may assume that $a_{1} \neq 0$. Then one has $v_{1}=b_{2} v_{2}+$ $\cdots+b_{p} v_{p}$, where $b_{i}=a_{i} / a_{1}$ for each $2 \leq i \leq p$. In particular, since T is alternating, one must have

$$
\begin{aligned}
T\left(v_{1}, \ldots, v_{p}\right) & =T\left(b_{2} v_{2}+\cdots+b_{p} v_{p}, v_{2}, \ldots, v_{p}\right) \\
& =b_{2} T\left(v_{2}, v_{2}, \ldots, v_{p}\right)+\cdots+b_{p} T\left(v_{p}, v_{2}, \ldots, v_{p}\right) \\
& =0+\cdots+0 \\
& =0
\end{aligned}
$$

Exercise 4.2.2: Dually, suppose that $\phi_{1}, \ldots, \phi_{p} \in V^{*}$ are linearly dependent, and prove that $\phi_{1} \wedge \cdots \wedge \phi_{p}=0$.

BRANDON OWENS

Proof. If $\phi_{1}, \ldots, \phi_{p}$ are linearly dependent, then there exist constants a_{1}, \ldots, a_{p}, not all of which are zero, such that $a_{1} \phi_{1}+\cdots+a_{p} \phi_{p}=0$. Without loss of generality, suppose that $a_{1} \neq 0$. Then $\phi_{1}=b_{2} \phi_{2}+\cdots+b_{p} \phi_{p}$ where $b_{i}=a_{i} / a_{1}$ for all $2 \leq i \leq p$. Then by the properties of the wedge product, one must have

$$
\begin{aligned}
\phi_{1} \wedge \cdots \phi_{p} & =\left(b_{2} \phi_{2}+\cdots b_{p} \phi_{p}\right) \wedge \phi_{2} \cdots \phi_{p} \\
& =b_{2}\left(\phi_{2} \wedge \phi_{2} \wedge \cdots \wedge \phi_{p}\right)+b_{3}\left(\phi_{3} \wedge \phi_{2} \wedge \cdots \wedge \phi_{p}\right)+\cdots+b_{p}\left(\phi_{p} \wedge \phi_{2} \wedge \cdots \wedge \phi_{p}\right) \\
& =b_{2}(0)+b_{3}(0)+\cdots+b_{p}(0) \\
& =0
\end{aligned}
$$

