MATH 209, MANIFOLDS II, WINTER 2011

Homework Assignment I: One-forms and integration

1. A one-form α on a smooth connected manifold M is called *exact* if and only if there exists a function f such that $\alpha = df$. Prove

• α is exact $\iff \int_{\gamma} \alpha = 0$ for any smooth closed curve γ .

2. [HAND IN] Let $\alpha = x \, dy$ on the plane \mathbb{R}^2 with coordinates (x, y). Let S_R^1 denote the circle of radius R > 0 centered at the origin, oriented counter clockwise. Evaluate

$$\int_{S^1_R} \alpha$$

Conclude that α is not exact.

If γ is any closed simple curve in \mathbb{R}^2 what is the geometrical meaning of $\int_{\gamma} x \, dy$?

- **3**. Find three different one-forms α in the plane for which $d\alpha = dx \wedge dy$.
- 4. Find a function S = S(x, y) such that $xdy = \frac{1}{2}(xdy ydx) + dS$.
- 5. Let $\alpha = (x \, dy y dx)/(x^2 + y^2)$.
- a) Show that $d\alpha = 0$.
- b) Show that $\int_{S_R^1} \alpha = 2\pi$ where S_R^1 is as per problem 2.
- c) Show that in polar coordinates (r, θ) we have $\alpha = d\theta$.
- d) Explain why (c) does not contradict problem 1.