- **1** Prove that the de Rham cohomology of the real line is given by $H^0(\mathbb{R}) = \mathbb{R}$, $H^1(\mathbb{R}) = 0$.
- **2** Prove by hand that the de Rham cohomology of the circle is $H^0(S^1) = S^1$, $H^1(S^1) = \mathbb{R}$.
- **3.** Let f(z) be a holomorphic function of the complex variable z=x+iy. Then we can think of f as a smooth map $\mathbb{R}^2 \to \mathbb{R}^2$ by writing w=u+iv=f(z) and observing that u=u(x,y), v=v(x,y) are smooth functions of (x,y). Let dz=dx+idy be the complex valued 1-form.

Prove that $f^*dz = f'(z)dz$ where f'(z) is the complex derivative of f.

- 4. Let $S^1 \subset \mathbb{C}$ be the standard unit circle, oriented the standard way, and endowed with its standard 'volume form' $\mu = 'd\theta'$, so that $\int_{S^1} \mu = 2\pi$. For n an integer let $f_n: S^1 \to S^1$ be the restriction of $z \to z^n$ to the unit circle. Show that $f^*\mu = n\mu$.
- **5**. Let $F: \mathbb{C} = \mathbb{R}^2 \to S^2$ be the stereographic projection chart, the inverse of the stereo projection map $S^2 \setminus N \to \mathbb{R}^2$ where $G(x,y,z) = (x/(1-z),y/(1-z)) = u+iv \in \mathbb{C}$. Compute, in the u,v coordinates, the pull-back by F of the standard 'volume form' on the sphere.
- **6.** Identifying $\mathbb{C} \cup \{\infty\}$ with S^2 as above, we see that any complex polynomial $p(z) = a_d z^d + \ldots + a_1 z + a_0$ can be viewed as a map $S^2 \to S^2$ which happens to map $N = \infty$ to itself.
 - a) Prove that the degree of the map z^d is d, for d a positive integer.
- b) Prove that the degree of any polynomial of degree d is d by finding a homotopy from p to the map of part (a).
- 7. The n+1 sphere is (topologically) the suspension of the n-sphere. Use this fact and induction to prove that for any d there is a map $S^n \to S^n$ having degree d.
 - **8.** Let $\pi: \mathbb{R}^3 \to \mathbb{R}^2$ be the standard projection $\pi(x, y, z) = (x, y)$.
- a) Show that if β is one-form on \mathbb{R}^3 which can be written as $\beta = \pi^* \alpha$ where α is a one-form on \mathbb{R}^2 , then β has the form $\beta = f(x, y)dx + g(x, y)dy$.
- b) Show that if X is a vector field on \mathbb{R}^3 and if π_*X is defined as a a vector field on \mathbb{R}^2 , then X must be of the form $X = f(x,y) \frac{\partial}{\partial x} + g(x,y) \frac{\partial}{\partial z} + h(x,y,z) \frac{\partial}{\partial z}$.

[Hint: It may help to look up the definition of π -projectible vector field. Warner is one reference containing this notion.]

- 9. The Poincaré metric ds^2 on the upper half plane is $\frac{dx^2+dy^2}{y^2}$
- a) Referring back to exercise 1, show that $ds^2 = \frac{|dz|^2}{Im(z)}$

b) Let
$$f(z)=(az+b)/(cz+d)$$
. Show that
$$f^*ds^2=\frac{1}{ad-bc}ds^2$$

provided a, d, b, c are real.