MATH 209, MANIFOLDS II, WINTER 2014

Homework Assignment 3: Differential Forms

1. [HAND IN] The following exercise relates div, grad and curl of vector calculus to the exterior derivative on $M = \mathbb{R}^3$. Equip \mathbb{R}^3 with the standard inner product $\langle \cdot, \cdot \rangle$. Let \mathcal{X} be the space of smooth vector fields on \mathbb{R}^3 and Ω^0 be the space of smooth functions thereon. Define isomorphisms

- $\Psi_1: \mathcal{X} \to \Omega^1(\mathbb{R}^3)$ by $\Psi_1(v) = \langle v, \cdot \rangle$.
- $\Psi_2: \mathcal{X} \to \Omega^2(\mathbb{R}^3)$ by $\Psi_2(v) = i_v (dx \wedge dy \wedge dz).$ $\Psi_3: \Omega^0 \to \Omega^3(\mathbb{R}^3)$ by $\Psi_3(f) = f \, dx \wedge dy \wedge dz.$

Prove that the following diagram commutes (up to signs):

$$C^{\infty}(\mathbb{R}^{3}) \xrightarrow{grad} \mathcal{X} \xrightarrow{curl} \mathcal{X} \xrightarrow{div} C^{\infty}(\mathbb{R}^{3})$$

$$\downarrow^{id} \qquad \downarrow^{\Psi_{1}} \qquad \downarrow^{\Psi_{2}} \qquad \downarrow^{\Psi_{3}}$$

$$C^{\infty}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{1}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{2}(\mathbb{R}^{3}) \xrightarrow{d} \Omega^{3}(\mathbb{R}^{3})$$

2. Rewrite Maxwell's equations in terms of exterior derivatives. The electromagnetic field is a two form $F = \Sigma F_{\mu\nu} dx^{\mu} \wedge dx^{\nu}$, where the indices μ, ν run through 0, 1, 2, 34 and the coordinates of space-time are x^0, x^1, x^2, x^3 with $x^0 = ct$ being the time coordinate. Write i, j for any of the spatial indices 1, 2, 3. The components F_{0i} correspond to the electric field and F_{ij} to the magnetic field. The charge- current density is a one-form $J = \Sigma J_{\mu} dx^{\mu}$ with J_0 corresponding to charge density ρ .

You will have to learn about the Hodge star operator for Minkowski space.

3. Prove that for a vector field v on M and $\alpha \in \Omega^k(M), \beta \in \Omega^l(M)$, we have $i_v(\alpha \wedge \beta) =$ $(i_v\alpha) \wedge \beta + (-1)^k\alpha \wedge (i_v\beta).$

4. A smooth map $F: M \to N$ induces the algebra homomorphism $F^*: \Omega^*(N) \to \Omega^*(M)$. Prove that $dF^* = F^*d$.