MATH 209, MANIFOLDS II, WINTER 2011

Homework Assignment III: Linear Algebra

1. [HAND IN] Let $\alpha_{1}, \ldots, \alpha_{n}$ be elements of V^{*}. Define the matrix $a_{i j}$ by $\alpha_{i}=\sum_{j} a_{i j} e_{j}^{*}$. Prove that $\alpha_{1} \wedge \cdots \wedge \alpha_{n}=\operatorname{det}\left(a_{i j}\right) e_{1}^{*} \wedge \cdots \wedge e_{n}^{*}$.
2. Let $F: V \rightarrow V$ be a linear map. Prove that the map of one-dimensional vector spaces $F^{*}: \bigwedge^{n} V^{*} \rightarrow \bigwedge^{n} V^{*}$ is multiplication by $\operatorname{det} F$.
3. An element $\omega \in A^{2}(V)=\bigwedge^{2} V^{*}$ is called non-degenerate or a linear symplectic form on V if $i_{v} \omega \neq 0$ for any non-zero $v \in V$. Define the matrix $A=\left(a_{i j}\right)$ by $\omega=\sum_{i, j} a_{i j} e_{i}^{*} \otimes e_{j}^{*}$. Note that A is skew-symmetric, i.e., $A^{\top}=-A$, since ω is skew-symmetric.
(a) Consider the map $V \rightarrow V^{*}$ given by $v \mapsto i_{v} \omega$. Prove that this map is an isomorphism if and only if ω is non-degenerate. Furthermore, A the matrix of this map in the bases $\left\{e_{i}\right\}$ and $\left\{e_{i}^{*}\right\}$. Thus, ω is non-degenerate if and only if $\operatorname{det} A \neq 0$.
(b) If ω is symplectic prove that $\operatorname{dim} V$ is even.
(c) With $n=2 m=\operatorname{dim}(V)$ as in (b), prove that ω is non-degenerate if and only if $\omega^{m} \neq 0$ in $\bigwedge^{n} V^{*}$.
(d) Let $\mu=e_{1}^{*} \wedge e_{2}^{*} \wedge \ldots \wedge e_{n}^{*}$ be the standard volume form, and write $\omega^{m}=P \mu$ with $P \in \mathbb{R}$ and $2 m=\operatorname{dim}(V)$ as in item (c). Show that $P^{2}=\operatorname{det}(A)$.

Remark. The function $P=P(A)$ of (d) is called the "Pfaffian". It is a polynomial: an analytic square root for the determinant acting on skew-symmetric matrices. It appears in the Chern-Gauss-Bonnet formula.
4. Consider the map $\Phi: V \otimes W^{*} \rightarrow L(W, V)$ sending $v \otimes \alpha$, where $v \in V$ and $\alpha \in W^{*}$, to the linear map $W \ni x \mapsto \alpha(x) v \in V$. Prove that Φ, define a linear isomorphism.

