
More on connections , specific to projective space and the Fubini-Study
metric and the canonical line bundle.

Background and basics: section 1.2 of my paper “Heisenberg and Isoholo-
nomic Inequality”, or section 3 of my “The Isoholonomic Problem and Some of
its applications” which you can get from my web page, under publications. In
these papers I get language and inspiration from quantum mechanics.

The arena of quantum mechanics is built out of Hilbert spaces. Write H for
a fixed Hilbert space and 〈·, ·〉 for its Hermitian inner product. Out of H we can
build :

S(H) = sphere in H = {ψ ∈ H : 〈ψ,ψ〉 = 1} ⊂ H. Its elements are called
“normalized states”.

IP (H) = space of complex one-dimensional subspace of H is the projective
space of H.

It is time to throw Lie groups into the mix:
U(H) = the unitary group of H , which is the group of all complex linear

transformations ofH preserving the Hermitian inner product; 〈Uψ,Uφ〉 = 〈ψ, φ〉
for all ψ, φ ∈ H. The symmetry group of quantum mechanics is the unitary
group.

Let us now suppose that dimCH = n. Then H admits an Hermitian or-
thonormal basis e1, . . . , en which yields and identification H ∼= Cn under which
the Hermitian inner product turns to the standard one on Cn.

Convention. The Hermitian inner product is complex linear in the second
slot, and complex anti-linear in the second: 〈

∑
viei,

∑
zjej〉 =

∑
v̄izi.

Exercise 1 Show that in matrix terms, using a Hermitian orthonormal basis
that the unitary group is defined by the quadratic equations UU∗ = Id where
U∗ is the conjugate transpose of U ∈ Mn(C), where Mn(C) denotes the vector
space of all complex n by n matrices and where Id ∈ Mn(C) is the identity
matrix. Write sym(n) for the space of all self-adjoint matrices.

a) Show that the map F : Mn(C) → sym(n) is a polynomial map between
real vector spaces and that Id is a regular value for this mapping.

b) Use basic manifold theory to conclude that the unitary group is a subman-
ifold of Mn(C).

c) Identify the tangent space to U(n) at the identiy as the kernel of dF at
Id. Describe this kernel in matrix terms. It is the lie algebra of the unitary
group.

d) Compute the dimension of U(n) and codimension of U(n) within Mn(C)
e) Show that U(n) is compact.
f) Show that U(n) is connected.
e) Show that group multiplication and inversion are smooth maps on U(n)

Definition 1 Any manifold G satisfying property (e) is called a Lie group.

Remark. A basic theorem asserts that the closed subgroups of the group
GL(n, IR) and GL(n,C), these being the groups of all real and complex invert-
ible n by n matrices, are Lie groups. These are called “matrix Lie groups”. You
have proved above, by hand, that U(n) ⊂ Gl(n,C) is a Lie group.
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Definition 2 The Hopf fibration is the circle fibration π : S(H)→ IP (H) which
sends ψ to π(ψ) = [ψ] = spanCψ.

The Hopf fibration is a U(H) equivariant: π(gψ) = gπ(ψ) where g ∈ U(H)
acts in the obvious way on S(H) and on IP (H).

1 Metric and Connection structure of Hopf fi-
bration. Fubini-Study metric.

Use the standard induced metric on the sphere S(H).

Definition 3 The standard connection for the Hopf fibration is the connection
whose horizontal distribution H ⊂ TS(H) is defined by declaring that Hψ is the
orthogonal complement to the fiber of π through ψ, for each ψ ∈ S(H), with the
orthogonal defined by the the standard metric on the sphere, which is the real
part of the Hermitian inner product.

Thus:
Hψ = ker(dπψ)⊥IR .

where we have used “⊥IR” for the perpindicular with respect to the real part of
the metric– which is a real inner product, and which is to be contrasted with
⊥, the Hermitian perpindicular.

Proposition 1
Hψ = ψ⊥ (1)

with corresponding connection form is given by

A(ψ, dψ) := 〈ψ, dψ〉 (2)

viewed as an iIR-valued one-form, iIR being the Lie algebra of S1.

Proof of eq (1).The Hermitian metric induces a real inner product by taking
its real part, and the intrinsic metric on the sphere is this real inner prod-
uct, restricted to the tangent spaces of the sphere. Let us write “⊥IR for the
perpindicular with respect to the real metric, to be contrasted with ⊥, the Her-
mitian perpindicular. We have that TψS(H) = ψ⊥IR . The fiber of π through ψ
is the S1 orbit eitψ so its tangent space, ker(dπψ) is spanned by iψ. (NOTE:
ψ⊥IRiψ !). Then Hψ = (iψ)⊥IR ∩ ψ⊥IR . Now verify that for any vector ψ we
have that (iψ)⊥IR ∩ ψ⊥IR = ψ⊥.

Proof of eq (2). In formula (2) the form dψ is the H-valued one form that
sends v ∈ TψS(H) to v viewed as a vector in H. It is the differential of the H-
valued inclusion of S(H)→ H. First note that kerA(ψ) = ψ⊥ = Hψ which says
that A defines the desired horizontal space. Second, we check the normalization
property. Above we saw that the infinitesimal generator ∂

∂θ of the circle action

is the vector field ∂
∂θ (ψ) = iψ. Evaluation A(ψ)( ∂∂θ (ψ) = 〈ψ, iψ〉 = i, which is

the correct normalization, if we identify IR with iIR by the linear map 1 7→ i.
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2 curvature

We compute dA = d〈ψ, dψ〉 = 〈dψ, dψ〉. This takes some parsing!. It does not
look like a two-form. How is it a two form? We have argued that dψ(v) = v ∈ H
for v ∈ TψS(H). Then, in some sense it must be that the curvature dA(v, w) =
〈v, w〉.

Proposition 2 The imaginary part of the Hermitian inner product is a two-
form,indeed a symplectic form on H, when H is viewed as a real vector space.
The pull-back of this two-form to the sphere S(H) is a two form on the sphere
whose kernel is the Hopf direction ∂

∂θ . This two-form is dA, that is to say:

dA(v, w) = Im(〈v, w〉)

for v, w ∈ v, w ∈ 〈ψ, dψ〉

Now, in coordinates??
****************
The tautological line bundle γ → IP (H) is the complex line bundle that

attaches to the point p ∈ IP (H), the complex one-dimensional subspace γp = p.
In other words,

γ = {p, v) : p ∈ IP (H), v ∈ H, v ∈ p} ⊂ IP (H)×H

Observation: The trivial vector bundle IP (H)×H is isomorphic to γ ⊕ γ⊥
where γ⊥p = (γp)

⊥ with the perp taken with respect to the Hermitian inner
product.

Proof. Any v ∈ H can be decomposed into a part tangentail to, and orthog-
onal to p = span(ψ).

For the tautological line bundle we have
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