Manifolds I
 Midterm

Richard Klevan

November 16, 2016

1. Proof The straightening lemma implies that there are coordinates x^{j} such that $X=\frac{\partial}{\partial x^{1}}$. Putting $Y=f^{j} \frac{\partial}{\partial x^{j}}$ we have that

$$
\begin{aligned}
{[X, Y] } & =\frac{\partial}{\partial x^{1}}\left(f^{j} \frac{\partial}{\partial x^{j}}\right)-f^{j} \frac{\partial^{2}}{\partial x^{j} \partial x^{1}} \\
& =f^{j} \frac{\partial^{2}}{\partial x^{j} \partial x^{1}}+\frac{\partial f^{j}}{\partial x^{1}} \frac{\partial}{\partial x^{j}}-f^{j} \frac{\partial^{2}}{\partial x^{j} \partial x^{1}} \\
& =\frac{\partial f^{j}}{\partial x^{1}} \frac{\partial}{\partial x^{j}}
\end{aligned}
$$

and setting this equal to $X=\frac{\partial}{\partial x^{1}}$ we obtain $f^{j} \frac{\partial}{\partial x^{j}}=\delta_{1, j}$ so that $f^{1}=x^{1}$ and $f^{j \neq 1}=0$ is a solution. Differentiating and substitution into the expression above confirms this result.
2. (i)
(ii)
3. (i) Proof Let ϕ_{x} be the coordinate chart $[x, y]=\left[\frac{x}{y}, 1\right] \mapsto \frac{x}{y}=: x$, that is $[x, 1] \mapsto x$. Then we have $g \cdot x=\phi_{x}^{-1}(g \cdot[x, 1])=\phi_{x}^{-1}([a x+b, c x+d])=\phi_{x}^{-1}\left(\left[\frac{a x+b}{c x+d}, 1\right]\right)=\frac{a x+b}{c x+d}$
(ii) First note that $E_{j j}^{2}=E_{j j}$ for $j=1,2$ and $E_{i, j}^{2}=E_{j i}^{2}=0$ for $i=1, j=2$. The first relation implies that $\left.\frac{d}{d t}\right|_{t=0}\left(e^{t E_{j j}} \cdot[x, 1]\right)=\left.\frac{d}{d t}\right|_{t=0}\left(1+\left(e^{t}-1\right) E_{j j}\right) \cdot[x, 1]$ and the second relation implies that $\left.\frac{d}{d t}\right|_{t=0}\left(e^{t E_{\alpha, \beta}} \cdot[x, 1]\right)=\left.\frac{d}{d t}\right|_{t=0}\left(1+t E_{\alpha, \beta}\right) \cdot[x, 1]$. From this we obtain

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0}\left(e^{t E_{11}} \cdot[x, 1]\right) & =\left.\frac{d}{d t}\right|_{t=0}\left(1+\left(e^{t}-1\right) E_{11}\right) \cdot[x, 1] \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\left[x e^{t}, 1\right]\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(x e^{t}\right) \\
& =\left.x e^{t}\right|_{t=0} \\
& =x
\end{aligned}
$$

Hence $f_{11} \frac{\partial}{\partial x}=x \frac{\partial}{\partial x}$ and

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0}\left(e^{t E_{22}} \cdot[x, 1]\right) & =\left.\frac{d}{d t}\right|_{t=0}\left(\left[x, e^{t}\right]\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(x e^{-t}\right) \\
& =-\left.x e^{-t}\right|_{t=0} \\
& =-x
\end{aligned}
$$

So that $f_{22} \frac{\partial}{\partial x}=-x \frac{\partial}{\partial x}$. And the second relation yields

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0}\left(e^{t E_{12}} \cdot[x, 1]\right) & =\left.\frac{d}{d t}\right|_{t=0}\left(1+t E_{11}\right) \cdot[x, 1] \\
& =\left.\frac{d}{d t}\right|_{t=0}(x+t, 1) \\
& =\left.\frac{d}{d t}\right|_{t=0}(x+t) \\
& =\left.1\right|_{t=0} \\
& =1
\end{aligned}
$$

So that $f_{12} \frac{\partial}{\partial x}=\frac{\partial}{\partial x}$ and, finally,

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0}\left(e^{t E_{21}} \cdot[x, 1]\right) & =\left.\frac{d}{d t}\right|_{t=0}\left(1+t E_{21}\right) \cdot[x, 1] \\
& =\left.\frac{d}{d t}\right|_{t=0}(x, 1+t x) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\frac{x}{1+t x}\right) \\
& =\left.\frac{-x^{2}}{(1+t x)^{2}}\right|_{t=0} \\
& =-x^{2}
\end{aligned}
$$

So that $f_{2,1} \frac{\partial}{\partial x}=-x^{2} \frac{\partial}{\partial x}$
(iii) It is not surprising that $\sigma\left(E_{11}\right)+\sigma\left(E_{2} 2\right)=0$ because we have

$$
\begin{aligned}
\left.\frac{d}{d t}\right|_{t=0}\left(e^{t\left(E_{11}+E_{22}\right)}[x, 1]\right) & =\left.\frac{d}{d t}\right|_{t=0}\left(e^{t I}[x, 1]\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(e^{t} I[x, 1]\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(e^{t}[x, 1]\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\left[e^{t} x, e^{t}\right]\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}\left(\frac{e^{t} x}{e^{t}}\right) \\
& =\left.\frac{d}{d t}\right|_{t=0}(x) \\
& =0
\end{aligned}
$$

(iv) We have been using the coordinate chart $[x, y]=[x / y, 1] \mapsto x / y=: x$, i.e. $[x, 1] \mapsto x$. Under this coordinate chart, the solution to $\frac{d x}{d t}=-x^{2}$ is $x=\frac{-1}{t+c}$. This appears to be singular at $t=-c$. However, consider the effect of transitioning to the chart $[x, y]=[1, y / x] \mapsto y / x=: y$, i.e. $[1, y] \mapsto y$. If the first coordinate chart is ϕ and the second ψ, we have the transition map $\psi \circ \phi^{-1}(x)=\frac{1}{x}$. Hence, under this coordinate transformation the solution becomes $x=t+c$ and this is no longer singular at $t=-c$. It seems that the apparent singularity was merely an artifact of the coordinate chart.

