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Proof The straightening lemma implies that there are coordinates =7 such that X = %.
Putting Y = f7-2- we have that
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and setting this equal to X = a%l we obtain fj% = 07 so that f! =2t and f771 =0 is
a solution. Differentiating and substitution into the expression above confirms this result.
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(i) Proof Let ¢, be the coordinate chart [z,y] = [7,1] — ¥ =: z, that is [z,1] — =.
Then we have g.¢ = ¢! (g.[x, 1]) = ¢; ' ([az + b, ez + d) = o3 (2555, 1]) = &5
(ii) First note that E?; = Ej; for j = 1,2 and E}; = E% = 0 for i = 1,j = 2. The
first relation implies that |,—o(e*#9.[2,1]) = £|—o(1 + (e' — 1)E};).[z,1] and the
second relation implies that 4 [,_o(e!P># [z, 1]) = <L|,—o(1 + tEq ).z, 1]. From this
we obtain
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Hence f11% = x% and
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So that fzg% = —xa%. And the second relation yields
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So that f12:2 = £ and, finally,
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So that fg’la% = —xQ%

(iii) It is not surprising that o(F11) + o(F22) = 0 because we have
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(iv) We have been using the coordinate chart [z,y] = [x/y,1] — z/y =: z, i.e. [z,1] — x.

Under this coordinate chart, the solution to ‘(% = 2?isz = t;—lc This appears
to be singular at ¢ = —c. However, consider the effect of transitioning to the chart

[z,y] = [1,y/z] = y/x =: y, i.e. [1,y] — y. If the first coordinate chart is ¢ and the
second 1), we have the transition map 1 o ¢~ !(z) = % Hence, under this coordinate
transformation the solution becomes x = t+ ¢ and this is no longer singular at t = —c.
It seems that the apparent singularity was merely an artifact of the coordinate chart.



