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 FROM TRIANGLES TO MANIFOLDS

 SHIING-SHEN CHERN

 1. Geometry. I believe I am expected to tell you all about geometry; what it is, its
 developments through the centuries, its current issues and problems, and, if possible, a peep into
 the future. The first question daes not have a clear-cut answer. The meaning of the word
 geometry changes with time and with the speaker. With Euclid, geometry consists of the logical
 conclusions drawn from a set of axioms. This is clearly not sufficient with the horizons of
 geometry ever widening. Thus in 1932 the great geometers 0. Veblen and J. H. C. Whitehead
 said, "A branch of mathematics is called geometry, because the name seems good on emotional
 and traditional grounds to a sufficiently large number of competent people" [1]. This opinion
 was enthusiastically seconded by the great French geometer Elie Cartan [2]. Being an analyst
 himself, the great American mathematician George Birkhoff mentioned a "disturbing secret fear
 that geometry may ultimately turn out to be no more than the glittering intuitional trappings of
 analysis" [3]. Recently my friend Andre Weil said: "The psychological aspects of true geometric
 intuition will perhaps never be cleared up. At one time it implied primarily the power of
 visualization in three-dimensional space. Now that higher-dimensional spaces have mostly
 driven out the more elementary problems, visualization can at best be partial or symbolic. Some
 degree of tactile imagination seems also to be involved" [4].

 At this point it is perhaps better to let things stand and turn to some concrete topics.

 2. Triangles. Among the simplest geometrical figures is the triangle, which has many
 beautiful properties. For example, it has one and only one inscribed circle and also one and only
 one circumscribed circle. At the beginning of this century the nine-point circle theorem was
 known to almost every educated mathematician. But its most intriguing property concerns the
 sum of its angles. Euclid says that it is equal to 1800, or S by radian measure, and deduces this
 from a sophisticated axiom, the so-calledparallel axiom. Efforts to avoid this axiom failed. The
 result was the discovery of non-Euclidean geometries in which the sum of angles of a triangle is
 less or greater than 7r, according as the geometry is hyperbolic or elliptic. The discovery of
 hyperbolic non-Euclidean geometry, in the eighteenth century by Gauss, John Bolyai, and
 Lobatchevsky, was one of the most brilliant chapters in human intellectual history.

 The generalization of a triangle is an n-gon, a polygon with n sides. By cutting the n-gon into
 n -2 triangles, one sees that the sum of its angles is (n - 2),g. It is better to measure the sum of
 the exterior angles! The latter is equal to 2,g, for all n-gons, including triangles.

 3. Curves in the plane; rotation index and regular homotopy. By applying calculus we can
 consider smooth curves and closed smooth curves in the plane, i.e., curves with a tangent line
 everywhere and varying continuously. As a point moves along a closed smooth (oriented) curve
 C once, the lines through a fixed point 0 and parallel to the tangent lines of C rotate through an
 angle 2nT or rotate n times about 0. This integer n is called the rotation index of C. (See Fig. 1.)
 A famous theorem in differential geometry says that if C is a simple curve, i.e., if C does not
 intersect itself, n = + 1.

 Clearly, there should be a theorem combining the theorem on the sum of exterior angles of an
 n-gon and the rotation index theorem of a simple closed smooth curve. This is achieved by
 considering the wider class of simple closed sectionally smooth curves. The rotation index of
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 FIG. I

 such a curve can be defined in a natural way by turning the tangent at a corner an amount equal
 to the exterior angle. (See Fig. 2.) Then the rotation index theorem above remains valid for
 simple closed sectionally smooth curves. In the particular case of an n-gon formed by straight
 segments, this reduces to the statement that the sum of its exterior angles is 2-r.

 This theorem can be further generalized. Instead of simple closed curves we can allow closed
 curves to intersect themselves. A generic self-intersection can be assigned a sign. Then, if the
 curve is properly oriented, the rotation index is equal to one plus the algebraic sum of the
 number of self-intersections. (See Fig. 3.) For example, the figure 8 has the rotation index zero.

 n=4 n=-2

 FIG. 2 FIG. 3

 A fundamental notion in geometry, or in mathematics in general, is deformation or homotopy.
 Two closed smooth curves are said to be regularly homotopic if one can be deformed to the other
 through a family of closed smooth curves. Since the rotation index is an integer and varies
 continuously in the family, it must remain a constant; i.e., it keeps the same value when the
 curve is regularly deformed. A remarkable theorem of Graustein-Whitney says that the converse
 is true [5]: Two closed smooth curves with the same rotation index are regularly homotopic.

 It is a standard practice in mathematics that in order to study closed smooth curves in the
 plane it is more profitable to look at all curves and to put them into classes, the regular
 homotopy classes in this case being an example. This may be one of the essential methodological
 differences between theoretical science and experimental science, where such a procedure is
 impractical. The Graustein-Whitney theorem says that the only invariant of a regular homotopy
 class is the rotation index.
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 FIG. 4

 4. Euclidean three-space. From the plane we pass to the three-dimensional Euclidean space
 where the geometry is richer and has distinct features. Perhaps the nicest space curve which does
 not lie in a plane is a circular helix. It has constant curvature and constant torsion and is the
 only curve admitting oo0 rigid motions. There is an essential difference between right-handed
 and left-handed helices (See Fig. 4), depending on the sign of the torsion; a right-handed helix

 cannot be congruent to a left-handed one, except by a mirror reflection. Helices play an
 important role in mechanics. From a geometrical viewpoint it may not be an entire coincidence

 that the Crick-Watson model of a DNA-molecule is double-helical. A double helix has
 interesting geometrical properties. In particular, by joining the end points of the helices by
 segments or arcs, we get two closed curves. In three-dimensional space they have a linking
 number. (See Fig. 5.)

 L=1 L=O

 L=2

 FIG. 5

 A recent controversial issue in biochemistry, raised by the mathematicians William Pohl and
 George Roberts, is whether the chromosomal DNA is double-helical. In fact, if it is, it will have
 two closed strands with a linking number of the order of 300,000. The molecule is replicated by
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 separation of the strands and formation of the complementary strand of each. With such a large
 linking number Pohl and Roberts showed that the replication process would have severe
 mathematical difficulties. Thus the double-helical structure of the DNA molecule, at least for
 the chromosome, has been questioned [6]. (Added January 26, 1979: A number of recent
 experiments have shown that some of the mathematical difficulties for the double helical
 structure of the DNA-molecule can be overcome by enzymatic activities (cf. F. H. C. Crick, Is
 DNA really a double helix? preprint, 1978).)

 The linking number L is determined by the formula of James H. White [7]:

 T+ W=L, (1)

 where T is the total twist and W the writhing number. The latter can be experimentally
 measured and changes by the action of an enzyme. This formula is of fundamental importance
 in molecular biology. Generally DNA molecules are long. In order to store them in limited
 space, the most economical way is to writhe and coil them. These discussions could indicate the
 beginning of a stochastic geometry, with the main examples drawn from biology.

 In a three-dimensional space surfaces have far more important properties than curves.
 Gauss's fundamental work elevated differential geometry from a chapter of calculus to an
 independent discipline. His Disquisitiones generales circa superficies curvas (1827) is the birth
 certificate of differential geometry. The main idea is that a surface has an intrinsic geometry
 based on the measure of arc length alone. From the element of arc other geometric notions, such
 as the angle between curves and the area of a piece of surface, can be defined. Plane geometry is
 thus generalized to any surface 2 based only on the local properties of the element of arc. This
 localization of geometry is both original and revolutionary. In place of the straight lines are the
 geodesics, the "shortest" curves between any two points (sufficiently close). More generally, a
 curve on 2 has a "geodesic curvature" generalizing the curvature of a plane curve and geodesics
 are the curves whose geodesic curvature vanishes identically.

 Let the surface 2 be smooth and oriented. At every point p of L there is a unit normal vector
 v(p) which is perpendicular to the tangent plane to 2 at p. (See Fig. 6.) The vector v(p) can be
 viewed as a point of the unit sphere SO with center at the origin of the space. By sending p to
 v(p) we get the Gauss mapping

 g: 2---> SO. (2)
 The ratio of the element of the area of SO by the element of area of L under this mapping is
 called the Gaussian curvature. Gauss's "remarkable theorem" says that the Gaussian curvature
 depends only on the intrinsic geometry of E. In fact, in a sense it characterizes this geometry.
 Clearly the Gaussian curvature is zero if L is the plane.

 F(p)

 FIG. 6
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 As in plane geometry we consider on L a domain D bounded by one or more sectionally
 smooth curves. D has an important topological invariant x(D), called its Euler characteristic,
 which is most easily defined as follows: Cut D into polygons in a "proper way" and denote by v,
 e, andf the number of vertices, edges, and faces, respectively. Then

 x(D) = v-e +f. (3)

 (Euler's polyhedral theorem was known before Euler, but Euler seems to have been the first one
 to recognize explicitly the importance of the "alternating sum.")

 The Gauss-Bonnet formula in surface theory is

 2 ext angles + f geod curv + f f Gaussian curv = 2,gX(D), (4)
 aD

 where aD is the boundary of D. For a plane domain the Gaussian curvature is zero. If in

 addition the domain is simply connected, we have x(D) = 1. Then this formula reduces to the
 rotation index theorem discussed in ?3. We are indeed a long way from the sum of angles of a
 triangle.

 Generalizing the geometry of closed plane curves we can consider closed oriented surfaces in
 space. The generalization of the rotation index is the degree of the Gauss mapping g in (2). The
 precise definition of the degree is sophisticated. Intuitively it is the number of times that the
 image g(E) covers S0, counted with sign. Unlike the plane, where the rotation index can be any
 integer, the degree d is completely determined by the topology of L; it is equal to

 d l= X(Y) (5)

 For the imbedded unit sphere this degree is + 1 independently of its orientation. A surprising
 result of S. Smale [8] says that the two oppositely oriented unit spheres are indeed regularly
 homotopic or, more intuitively, that the unit sphere can be turned inside out through a regular
 homotopy. It is essential that at each stage of the homotopy the surface has a tangent plane
 everywhere, but is allowed to intersect itself.

 5. From coordinate spaces to manifolds. It was Descartes who in the seventeenth century
 revolutionized geometry by using coordinates. Quoting Hermann Weyl, "The introduction of
 numbers as coordinates was an act of violence" [9]. From now on, paraphrasing Weyl, figure
 and number, like angel and devil, fight for the soul of every geometer. In the plane the Cartesian
 coordinates of a point are its distances, with signs, from two fixed perpendicular lines, the
 coordinate axes. A straight line is the locus of all points whose coordinates x,y satisfy a linear
 equation

 ax + by + c =0. (6)

 The result is the translation of geometry into algebra.
 Once the door was opened for analytic geometry, other coordinate systems came into play.

 Among them are polar coordinates in the plane and spherical coordinates, cylindrical coordi-
 nates in space, and elliptic coordinates in the plane and in space. The latter are adapted to the
 confocal quadrics and are particularly suited to the study of the ellipsoids, which include our
 earth.

 There is also a need for higher dimensions. For even if we start with a three-dimensional
 space, the theory of relativity calls for the inclusion of time as a fourth dimension. On a more
 elementary level, to record the motion of a particle, including its velocity, requires six coordi-
 nates (the hodograph). All the continuous functions in one variable form an infinite-dimensional
 space. Those which are square-integrable form a Hilbert space, which can be coordinatized by
 an infinite sequence of coordinates. Such a viewpoint, of considering all functions with
 prescribed properties, is fundamental in mathematics.

 From the proliferation of coordinate systems it is natural to have a theory of coordinates.
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 General coordinates need only the property that they can be identified with points; i.e., there is
 a one-to-one correspondence between points and their coordinates-their origin and meaning
 are inessential.

 If you find it difficult to accept general coordinates, you will be in good company. It took
 Einstein seven years to pass from his special relativity in 1908 to his general relativity in 1915.
 He explained the long delay in the following words: "Why were another seven years required for
 the construction of the general theory of relativity? The main reason lies in the fact that it is not
 so easy to free oneself from the idea that coordinates must have an immediate metrical
 meaning" [10].

 After being served by coordinates in the study of geometry, we now wish to be free from their
 bond. This leads to the fundamental notion of a manifold. A manifold is described locally by
 coordinates, but the latter are subject to arbitrary transformations. In other words, it is a space
 with transient or relative coordinates (principle of relativity). I would compare the concept with
 the introduction of clothing to human life. It was a historical event of the utmost importance

 that human beings began to clothe themselves. No less significant was the ability of human
 beings to change their clothing. If geometry is the human body and coordinates are clothing,
 then the evolution of geometry has the following comparison.

 Synthetic geometry
 Coordinate geometry

 Manifolds

 Naked man

 Primitive man

 Modern man

 A manifold is a sophisticated concept even for mathematicians. For example, a great
 mathematician such as Jacques Hadamard "felt insuperable difficulty . .. in maintaining more
 than a rather elementary and superficial knowledge of the theory of Lie groups" [11], a notion
 based on that of a manifold.

 6. Manifolds; local tools. With coordinates practically meaningless there is a need for new
 tools in studying manifolds. The key word is invariance. Invariants are of two kinds: local and
 global. The former refer to the behavior under a change of the local coordinates, while the latter
 are global invariants of the manifold, examples being the topological invariants. Two of the most
 important local tools are the exterior differential calculus and Ricci's tensor analysis.

 An exterior differential form is the integrand of a multiple integral, such as

 JfPdydz + Qdzdx + Rdxdy, (7)
 D

 in (x,y, z)-space, where P, Q, R are functions in x,y, z and D is a two-dimensional domain. It is
 observed that a change of variables in D (supposed to be oriented) will be taken care of
 automatically if the multiplication of differentials is anti-symmetric, i.e.,

 a'Adz = - dzAdja, etc., (8)
 where the symbol A is used to denote exterior multiplication. It is also more suggestive to
 introduce the exterior two-form

 o= PdAdz + QdzAdx + RdxAdy (9)

 and to write the integral (7) as a pairing (D, o) of the domain D and the form to.
 For if the same is done in n-space, then Stokes's theorem can be written

 (D, d@) = (aD, to), (10)
 where D is an r-dimensional domain and w is an exterior (r - 1)-form; aD is the boundary of D
 and dw is the exterior derivative of X and is an r-form. Formula (10), the fundamental formula
 in multi-variable calculus, shows that a and d are adjoint operators. The remarkable fact is that,
 while the boundary operator a on domains is global, the exterior differentiation operator d on
 forms is local. This makes d a powerful tool. When applied to a function (= 0-form) and a
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 1-form, it gives the gradient and the curl, respectively. All the smooth forms, of all degrees ( <
 dim of manifold), of a differentiable manifold constitute a ring with the exterior differentiation
 operator d. Elie Cartan used the exterior differential calculus most efficiently in local problems
 of differential geometry and partial differential equations. The global theory was founded by G.
 de Rham, after initial work of Poincare. This will be discussed in the next section.

 In spite of its importance the exterior differential calculus is inadequate in describing the
 geometrical and analytical phenomena on a manifold. A broader concept is Ricci's tensor
 analysis. Tensors are based on the fact that a manifold, being smooth, can be approximated at
 every point by a linear space, called its tangent space. The tangent space at a point leads to
 associated tensor spaces. Differentiation of tensor fields needs an additional structure, called an
 affine connection. If the manifold has a Riemannian or Lorentzian structure, the corresponding
 Levi-Civita connection will serve the purpose.

 7. Homology. Historically a systematic study of the global invariants of a manifold began
 with combinatorial topology. The idea is to decompose the manifold into cells and see how they
 fit together. (The decomposition satisfies some mild conditions, which we will not specify.) In
 particular, if M is a closed manifold of dimension n and ak denotes the number of k cells of the
 decomposition, k = 0,1, ... , n, then, as a generalization of (3), the Euler-Poincare characteristic of
 M is defined by

 X(M) = ao-a+, + + (-l)n an. (11)
 The basic notion in homology theory is that of a boundary. A chain is a sum of cells with

 multiplicities. It is called a cycle if it has no boundary, i.e., if its boundary is zero. The boundary
 of a chain is a cycle (see Fig. 7). The number of linearly independent k-dimensional cycles
 modulo k-dimensional boundaries is a finite integer bk, called the kth Betti number. The
 Euler-Poincare formula says

 x(M)-bo-bi+* * +(-l)nbn. (12)

 (a) (b)
 FIG. 7

 The Betti numbers bk, and hence x(M) itself, are topological invariants of M, that is, they are
 independent of the decomposition and remain invariant under a topological transformation of
 M. This and more general statements could be considered the fundamental theorems of
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 combinatorial topology. After the path-breaking works of Poincare and L. E. J. Brouwer,
 combinatorial topology blossomed in the U.S. in the 1920's under the leadership of Veblen,
 Alexander, and Lefschetz.

 While this is an effective way in deriving topological invariants, the danger in cutting a
 manifold is that it might be "killed." Precisely, this means that by using a combinatorial
 approach we may lose sight of the relations of the topological invariants with local geometrical
 properties. It turns out that, while homology theory depends on the boundary operator a, there
 is a dual cohomology theory based on the exterior differentiation operator d, the latter being a
 local operator.

 The resulting de Rham cohomology theory can be summarized as follows: The operator d has
 the fundamental property that, when applied repeatedly it gives the zero form; that is, for any
 k-form a, the exterior derivative of the (k + 1)-form da is zero. This corresponds to the
 geometrical fact that the boundary of any chain (or domain) has no boundary. (See (10).) A
 form a is called closed, if da =0. It is called a derived form, if there exists a form ,B, of degree
 k - 1, such that it can be written a = d,8. Thus a derived form is always closed. Two closed forms
 are called cohomologous if they differ by a derived form. All the closed k-forms which are
 cohomologous to each other constitute the k-dimensional cohomology class. The remarkable
 fact is that, while the families of k-forms, closed k-forms, derived k-forms are immensely large,
 the k-dimensional cohomology classes constitute a finite-dimensional linear space whose dimen-
 sion is the kth Betti number bk.

 De Rham cohomology is the forerunner of sheaf cohomology, which was founded by J. Leray
 [12] and perfected and applied with great success by H. Cartan and J.-P. Serre.

 8. Vector fields and generalizations. On a manifold M it is natural to consider continuous
 vector fields, i.e., the attachment of a tangent vector to each point, varying in a continuous
 manner. If the Euler-Poincare characteristic x(M) is not zero, there is at least one point of M at
 which the vector vanishes. In other words, when the wind blows there is at least one spot on
 earth with no wind (for the Euler characteristic of the two-dimensional sphere is equal to 2).
 More precisely, at an isolated zero of a continuous vector field, an integer, called the index, can
 be defined, which describes to a certain extent the behavior of the vector field at the zero, i.e.,
 whether it is a source, a sink, or otherwise. No matter what the vector field is, so long as it is
 continuous and has only a finite number of zeros, then the theorem of Poincare-Hopf says that
 the sum of its indices at all the zeros is a topological invariant which is precisely x(M).

 This is a statement on the tangent bundle of M, i.e., the collection of the tangent spaces of M.
 More generally, a family of vector spaces parametrized by a manifold M and satisfying a local
 product condition is called a vector bundle over M.

 A fundamental question is whether such a bundle is globally a product. The above discussion
 shows that the tangent bundle is not a product if X(M)# 0; for if it were a product, there would
 exist a continuous vector field which is nowhere zero. The existence of a space which is locally
 but not globally a product, such as the tangent bundle of a manifold M with X(M)#A0, is not
 easy to visualize; geometry thus enters a more sophisticated phase.

 To describe the global deviation of a vector bundle from a product space the first invariants
 are the so-called characteristic cohomology classes. The Euler-Poincare characteristic is the
 simplest of the characteristic classes.

 The Gauss-Bonnet formula (4) in ?4 takes the particularly simple form

 JJKdA = 27x(2) (4a)
 when the surface I has no boundary. In this formula K is the Gaussian curvature and dA is the
 element of area. Formula (4a) is of paramount importance because it expresses the global
 invariant x(z) as the integral of a local invariant, which is perhaps the most desirable
 relationship between local and global properties. This result has a wide generalization.
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 Let

 ,z: E--->M (13)

 be a vector bundle. The generalization of a tangent vector field on M is a section of the bundle,
 i.e., a smooth mapping s: M->E, such that the composition 'zo s is the identity. Since E is only
 locally a product, the differentiation of s needs an additional structure, usually called a
 connection. The resulting differentiation, called covariant differentiation, is generally not
 commutative. The notion of curvature is a measure of the noncommutativity of covariant
 differentiation. Suitable combinations of the curvature give rise to differential forms which
 represent characteristic cohomology classes in the sense of the de Rham theory, of which the
 Gauss-Bonnet formula (4a) is the simplest example [13]. I believe that the concepts of vector
 bundles, connections, and curvature are so fundamental and so simple that they should be
 included in any introductory course on multivariable calculus.

 9. Elliptic differential equations. When M has a Riemannian metric, there is an operator *
 sending a k-form a to the (n-k)-form *a,n=dimM. It corresponds to the geometrical
 construction of taking the orthogonal complement of a linear subspace of the tangent space.
 With * and the differential d we introduce the codifferential

 I()nk+ n+ I*d* (14)
 and the Laplacian

 A = d3 + &d. (15)

 Tlhen the operator 8 sends a k-form to a (k - I)-form and A sends a k-form to a k-form. A form
 a satisfying

 Aa = (16)

 is called harmonic. A harmonic form of degree 0 is a harmonic function in the usual sense.
 The equation (16) is an elliptic partial differential equation of the second order. If M is

 closed, all its solutions form a finite dimensional vector space. By a classical theorem of Hodge
 this dimension is exactly the kth Betti number bk. It follows by (12) that the Euler characteristic
 can be written

 X(M)=de -do, (17)

 where de (respectively, do) is the dimension of the space of harmonic forms of even (respectively
 odd) degree. The exterior derivative d is itself an elliptic operator and (17) can be regarded as
 expressing x(M) as the index of an elliptic operator. The latter is, for any linear elliptic operator,
 equal to the dimension of the space of solutions minus the dimension of the space of solutions of
 the adjoint operator.

 The expression of the index of an elliptic operator as the integral of a local invariant
 culminates in the Atiyah-Singer index theorem. It includes as special cases many famous
 theorems, such as the Hodge signature theorem, the Hirzebruch signature theorem, and the
 Riemann'Roch theorem for complex manifolds. An important by-product of this study is the
 recognition of the need to consider pseudo-differential operators on manifolds, which are more
 general than differential operators.

 Elliptic differential equations and systems are closely enmeshed with geometry. The Cauchy-
 Riemann differential equations, in one or more complex variables, are at the foundation of
 complex geometry. Minimal varieties are solutions of the Euler-Lagrange equations of the
 variational problem minimizing the area. These equations are quasi-linear. Perhaps the "most"
 non-linear equations are the Monge-Ampere equations, which are of importance in several
 geometrical problems. Great progress has been made in these areas in recent years [14]. With
 this heavy intrusion of analysis George Birkhoff's remark quoted above sounds even more
 disturbing. However, while analysis maps a whole mine, geometry looks out for the beautiful
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 stones. Geometry is based on the principle that not all structures are equal and not all equations
 are equal.

 10. Euler characteristic as a source of global invariants. To summarize, the Euler characteristic
 is the source and common cause of a large number of geometrical disciplines. I will illustrate this
 relationship by a diagram. (See Fig. 8.)

 Elliptic Combinatorial
 Topology Topology

 Euler

 Characteristic

 Total Homology and Sheaf

 Curvature Cohomology

 Characteristic
 Classes

 FIG. 8

 11. Gauge field theory. At the beginning of this century differential geometry got the spotlight
 through Einstein's theory of relativity. Einstein's idea was to interpret physical phenomena as
 geometrical phenomena and to construct a space which would fit the physical world. It was a
 gigantic task and it is not clear whether he said the last word on a unified field theory of
 gravitational and electromagnetic fields. The introduction of vector bundles described above,
 and particularly the connections in them with their characteristic classes and their relations to
 curvature, widened the horizon of geometry. The case of a line bundle (i.e., when the fiber is a
 complex line) furnishes the mathematical basis of Weyl's gauge theory of an electromagnetic
 field. The Yang-Mills theory, based on an understanding of the isotopic spin, is the first example
 of a nonabelian gauge theory. Its geometrical foundation is a complex plane bundle with a
 unitary connection. Attempts to unify all field theories, including strong and weak interactions,
 have recently focused on a gauge theory, i.e., a geometrical model based on bundles and
 connections. It is with great satisfaction to see geometry and physics united again.

 Bundles, connections, cohomology, characteristic classes are sophisticated concepts which
 crystallized after long years of search and experimentation in geometry. The physicist C. N.
 Yang wrote [15]: "That nonabelian gauge fields are conceptually identical to ideas in the
 beautiful theory of fiber bundles, developed by mathematicians without reference to the physical
 world, was a great marvel to me." In 1975 he mentioned to me: "This. is both thrilling and
 puzzling, since you mathematicians dreamed up these concepts out of nowhere." This puzzling is
 mutual. In fact, referring to the role of mathematics in physics, Eugene Wigner spoke about the
 unreasonable effectiveness of mathematics [16]. If one has to find a reason, it might be expressed
 in the vague term "unity of science." Fundamental concepts are always rare.

 12. Concluding remarks. Modern differential geometry is a young subject. Not counting the
 strong impetus it received from relativity and topology, its developments have been continuous.
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 I am glad that we do not know what it is and, unlike many other mathematical disciplines, I
 hope it will not be axiomatized. With its contact with other domains in and outside of
 mathematics and with its spirit of relating the local and the global, it will remain a fertile area
 for years to come.

 It may be interesting to characterize a period of mathematics by the number of variables in
 the functions or the dimension of the spaces it deals with. In this sense nineteenth century
 mathematics is one-dimensional and twentieth century mathematics is n-dimensional. It is
 because of the multi-variables that algebra acquires paramount importance. So far most of the
 global results on manifolds are concerned with even-dimensional ones. In particular, all complex
 algebraic varieties are of even real dimension. Odd-dimensional manifolds are still very mysteri-
 ous. I venture to hope that they will receive more attention and substantial clarification in the
 twenty-first century. Recent works on hyperbolic 3-manifolds by W. Thurston [17] and on closed
 minimal surfaces in a 3-manifold by S. T. Yau, W. Meeks, and R. Schoen have thrown
 considerable light on 3-manifolds and their geometry. Perhaps the problem of problems in
 geometry is still the so-called Poincare conjecture which says that a closed simply connected
 3-dimensional manifold is homeomorphic to the 3-sphere. Topological and algebraic methods
 have so far not led to a clarification of this problem. It is conceivable that tools in geometry and
 analysis will be found useful.

 This paper, written with partial support from NSF Grant MCS77-23579, was delivered as a Faculty Research
 Lecture at Berkeley, California, on April 27, 1978.

 References

 1. 0. Veblen and J. H. C. Whitehead, Foundations of Differential Geometry, Cambridge, England, 1932, p.
 17.

 2. Elie Cartan, Le role de la theorie des groupes de Lie dans revolution de la geom&trie moderne, Congres
 Inter. Math., Oslo, 1936, Tome I, p. 96.

 3. George D. Birkhoff, Fifty years of American mathematics, Semicentennial Addresses of Amer. Math. Soc.,
 1938, p. 307.

 4. A. Weil, S. S. Chern as friend and geometer, Chern, Selected Papers, Springer Verlag, New York, 1978, p.
 xii.

 5. H. Whitney, On regular closed curves in the plane, Comp. Math. 4 (1937) 276-284.
 6. William F. Pohl and George W. Roberts, Topological considerations in the theory of replication of DNA,

 Journal of Mathematical Biology, 6 (1978) 383-386, 402.
 7. James H. White, Self-hnking and the Gauss integral in higher dimensions, American J. of Math., 91 (1969),

 693-728; B. Fuller, The writhing number of a space curve, Proc. Nat. Acad. Sci., 68 (1971) 815-819; F. Crick,
 Linking numbers and nucleosomes, Proc. Nat. Acad. Sci., 73 (1976) 2639-2643.

 8. S. Smale, A classification of immersions of the two-sphere, Transactions AMS, 90 (1959) 281-290; cf. also
 A. Phillips, Turning a surface inside out, Scientific American, 214 (May 1966) 112-120. A film of the process, by
 N. L. Max, is distributed by Intermational Film Bureau, Chicago, Ill.

 9. H. Weyl, Philosophy of Mathematics and Science, 1949, p. 90.
 10. A. Einstein, Library of Living Philosophers, vol. 1, p. 67.

 11. J. Hadamard, Psychology of Invention in the Mathematical Field, Princeton, 1945, p. 115.
 12. R. Godement, Topologie algebrique et theorie des faisceaux, Hermann, Paris, 1958.
 13. S. Chem, Geometry of characteristic classes, Proc. 13th Biennial Sem. Canadian Math. Congress, 1-40

 (1972).
 14. S. T. Yau, The role of partial differential equations in differential geometry, Int. Congress of Math.,

 Helsinki, 1978.
 15. C. N. Yang, Magnetic monopoles, fiber bundles, and gauge fields, Annals of the New York Academy of

 Sciences, 294 (1977) 86-97.
 16. E. Wigner, The unreasonable effectiveness of mathematics in the natural sciences, Communications on

 Pure and Applied Math., 13 (1960) 1-14.
 17. W. Thurston, Geometry and topology in dimension three, Int. Congress of Math., Helsinki, 1978.

 DEPARTMENT OF MATHEMATICS, UNvuRsrrY OF CALFoRNIA, BERELEY, CA 94720.

This content downloaded from 128.114.229.247 on Mon, 31 Oct 2016 04:39:28 UTC
All use subject to http://about.jstor.org/terms


	Contents
	p. 339
	p. 340
	p. 341
	p. 342
	p. 343
	p. 344
	p. 345
	p. 346
	p. 347
	p. 348
	p. 349

	Issue Table of Contents
	American Mathematical Monthly, Vol. 86, No. 5 (May, 1979) pp. 339-430
	Front Matter [pp. ]
	From Triangles to Manifolds [pp. 339-349]
	Student Days--1930 [pp. 350-356]
	Euler Subdues a Very Obstreperous Series [pp. 356-372]
	Mathematical Notes
	Sums of Reciprocals of Integers Missing a Given Digit [pp. 372-374]
	A Generalization of Zolotarev's Theorem [pp. 374-375]
	On Products of Transpositions and Their Graphs [pp. 376-380]

	Classroom Notes
	On the Use of a Differentiable Homotopy in the Proof of the Cauchy Theorem [pp. 380-382]

	Mathematical Education
	Is There Life After Mathematics? [pp. 383-386]
	A Discrete Approach to Computer-Oriented Calculus [pp. 386-391]

	Problems and Solutions
	Problems Dedicated to Emory P. Starke: S11-S13 [pp. 392-393]
	Elementary Problems: E2773-E2778 [pp. 393]
	Solutions of Elementary Problems
	E2677 [pp. 394]
	E2692 [pp. 394-395]
	E2701 [pp. 396]
	E2703 [pp. 396-397]
	E2704 [pp. 397-398]
	E2705 [pp. 398]

	Advanced Problems: 6267-6269 [pp. 398-399]
	Solutions of Advanced Problems
	6177 [pp. 399]
	6178 [pp. 399-401]
	6180 [pp. 401]


	Reviews
	Review: untitled [pp. 401-412]
	Telegraphic Reviews [pp. 413-417]

	News and Notices [pp. 418-420]
	Mathematical Association of America: Official Reports and Communications
	Meeting of the Louisiana-Mississippi Section [pp. 421]
	February Meeting of teh Northern California Section [pp. 421]
	The Sixty-Second Annual Meeting of the Association [pp. 422-424]
	Special Sessions of the Assocaition [pp. 424]
	Meeting of the Board of Governors [pp. 425-426]
	Annual Business Meeting of the Association [pp. 426-427]
	Poster Session [pp. 427-428]
	Meetings of Other Organizations [pp. 428-429]
	Arrangements, Entertainment and Recreation [pp. 429]
	Academica Members Elected into the Association [pp. 429]
	Calander of Future Meetings [pp. 430]
	Future Meetings of Other Organizations [pp. 430]

	Back Matter [pp. ]



