
TANGENT VECTORS. THREE OR FOUR DEFINITIONS.

RMONT

We define and try to understand the tangent space of a manifold Q at a point
q, as well as vector fields on a manifold. The tangent space at q ∈ Q is a real vector
space intrinsically attached to the manifold. It is denoted by TpqQ. Its dimension
is n, the dimension of the manifold. If xi, i = 1, . . . , n are coordinates in a nbhd of
q then the expressions ∂

∂xi form a basis for TqQ. If F ∶ Q → M is a smooth map,
then its differential dFq ∶ TqQ→ TF (q)M is a linear map between tangent spaces.

Three definitions. For Q an abstract manifold, not embedded in any Eu-
clidean space, there are three equivalent definition of the tangent space at q ∈ Q.

1) as derivations acting on functions defined near q.
2) as equivalence classes of curves passing through q
3) an operational definition, directly from coordinates.
We will need to understand all three definitions, and how to go back and forth

between them.
If Q ⊂ RN is embedded, then there is a 4th definition,
4) If L is an n-dimensional linear subspace of RN , then q + L is an affine space

passing through q. Among all n-dimensional linear subspaces L ⊂ RN , the tangent
space TqQ is that linear subspace such that q + TqQ is the best approximation to
Q in the usual calculus sense.

1. Vector fields as Derivations.

From beginning calculus we know that the operation f ↦Df ∶= df/dx is a linear
operator on the algebra A = C∞(R). In addition to being linear, it satisfies the
Liebnitz identity:

(1) D(fg) = fDg + gDf, for all f, g ∈ A
Definition 1. Let K be a field and A a K algebra with unit. Then a derivation on
A is a K-linear operator D ∶ A→ A satisfying the Liebnitz identity , eq (1).

We can now give a definition of ‘vector field on a manifold”.

Definition 2. Let A = C∞(Q) be the algebra of smooth functions on a manifold
Q. Then a vector field is a derivation of A. The space of all vector fields forms is
denoted by χ(Q) or by Γ(TQ).

Exercise 1. Prove that if D ∶ A → A is a derivation of A, then D(1) = 0 where 1
is the unit of the commutative K-algebra A

Example 1. The partial derivatives ∂
∂xi are derivations of A = C∞(Rn).

Exercise 2. Prove that If D ∶ A→ A is a derivation of A, and if h ∈ A then hD is
also a derivation, where (hD)(g) = h(Dg). Show that the vector space Der(A) of
all derivations of A is a module over A.
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It follows from the previous example and the exercise above that

(2) X = Σni=1X
i ∂

∂xi
;Xi smooth functions on Rn

are derivations of Rn.

Theorem 1. Any vector field on Rn can uniquely be expressed in the form of eq
(2) where the Xi are smooth functions on Rn

2. Tangent Space. Cotangent space, algebraic definitions.

If X is a smooth vector field on M , and q ∈ M then X(q) should be a ‘vector’
attached at q. The vector space to which it is attached is denoted TqM and called
the tangent space at q. Let us set

v =X(q) ∈ TqM
and agree that the meaning of v is as a linear map v ∶ C∞(M) → R defined by
v[f] =X[f](q). From X[fg] = fX[g] + gX[f] we see that

(3) v[fg] = f(q)v[g] + g(q)v[f]
This suggests the definition:

Definition 3. The tangent space at q ∈M , henceforth denoted by TqQ, is the space
of linear functionals C∞(M) → R satisfying the additional derivation condition of
eq (3).

Now please observe that if f, g ∈ mp, the ideal of functions vanishing at q, then
v[fg] = 0. The linear span of functions of this form fg, f, g ∈ mq is denoted m2

p and

is a subalgebra: m2
q ⊂ mq ⊂ C∞(M).. By linearity v vanishes on m2

q. Furthermore,
note that if f ∈ C∞(M) then f − f(q) = f − f(q)1 ∈ mq and that v[f] = v[f − f(q)]
since v[1] = 0. We have proved the first half of :

Proposition 1. Each v ∈ TqM induces a linear map mq/m2
q → R, and this linear

functional uniquely determines v. Moreover, every such linear map is induced by a
derivation v ∈ TqM .

The first half of the proposition asserts the existence of a canonical linear injec-
tion TqM → (mq/m2

q)∗. The second, as yet unproved, half of the proposition asserts
that this injection is onto, and hence an isomorphism.

INJECTIVITY. Our next goal is to prove this second half, that is, to show
that the linear injection of the proposition is indeed onto. With this in mind, we
introduce another basic object of manifold theory.

Definition 4. The cotangent space at T ∗qM at q is mq/m2
q.

Exercise 3. , Show that T ∗0 Rn is an n-dimensional vector space whose basis is the
linear coordinate functions xi, taken mod the ideal generated by their products xixj.

Solution If f ∶ Rn → R is smooth near zero and if f(0, . . . ,0) = 0 then Taylor
tells us that

f(x1, x2, . . . , xn) = Σaix
i +Σbijx

ixj +O(x3).
Thus f ≡ Σaix

i(modm2
0) and the xi mod m2

0 form a basis for T ∗pM .
As a consequence of the exercise we find:
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Proposition 2. T ∗qM is a real vector space of dimension n = dim(M). Coordinates

x1, . . . , xn defined in a nbhd of q induce a basis denoted dx1, . . . dxn and defined by
eq (4) below.

Proof. Let x1, . . . , xn be coordinates defined via chart whose domain contains
a nbhd of q. Subtract the constants ci = xi(p) from the xi to get that xi − ci ∈ mq.
Then

(4) dxi ∶= xi − xi(q)(modm2
q)

define elements of T ∗q Q = mq/m2
q. Since the coordinate chart yields a diffeomorphism

between the nbhd of q and Rn, and since the coordinate functions form a basis for
T ∗0 Rn, these dxi form a basis for T ∗q Q. QED

COMMENTARY on PROOF SHORTCOMINGS. It may bother you, rightly so,
that in the proof above the xi are actually not functions on all of Q. There are two
ways to deal with this shortcoming.

● (1) Extend the xi to all of M by ‘bumping them off” outside a smaller nbhd
of q by using a bump function β, so they are extended outside of a nbhd of
q to be zero.

● (2): Go back to the definitions of mq etc and make everything local by
doing things on the level of germs, these being at heart maps or functions
defined in arbitrarily small nbhds of a point.

Basis dxi. Dual basis ∂
∂xi .

The dual basis to the basis dxi for T ∗qM is written ∂
∂xi . Thus:

dxi( ∂

∂xj
) ∶= ∂xi

∂xj
= δij

Using this relation, linearity, the Taylor expansion as per above, we see that ∂
∂xi

acts on C∞(M) by expressing f ∈ C∞(M) in the local coordinates xi and taking
the resulting partial derivative, and evaluating appropriately:

∂

∂xi
∣q[f] = ∂f ○ φ

∂xi
∣φ−1(q).

where φ ∶ Rn ⇢ M is the inverse of the coordinate chart whose components are
(x1, . . . , xn).

This yields the alternative definition

Definition 5. The tangent space TqM at q is the dual vector space to the cotangent
space. Thus: TqM = (mq/m2

q)∗.

3. Curves as tangent vectors. Language of germs.

The most “geometric” way to define tangent vectors at q is as equivalence classes
of curves passing through q. We only need tiny arcs of such curves. Similarly, for
defining the cotangent space, we only need functions defined in tiny nbhds of the
point q in question. See item (1) on “COMMENTARY on Proof Shortcomings”
above. With these two applications in mind, we take a few moments to define the
notion of the “germ of a map”.

Let X and Y be smooth manifolds and p ∈ X. Write f ∶ (X,p) ⇢ Y to mean
that f has domain some nbhd U of p and that f ∶ U → Y is smooth. We may also
fix a point q ∈ Y and then we write f ∶ (X,p) ⇢ (Y, q) to mean that we also impose
the condition that f(p) = q.
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Definition 6. Two smooth maps f, g ∶ (X,p) ⇢ Y have the same germ if there is
a nbhd V of p on which both f and g are defined and such that such that f ∣V = g∣V .

Exercise 4. The space of all germs of functions (M,p) → R forms a local ring,
denoted C∞(M)p whose unique maximal ideal consists of the germs of functions
vanishing at p which we will continue to write as mp.

Exercise 5. If f, g ∶ (Rn,0) → R have the same germ, then their Taylor expansions
agree to all orders.

Definition 7. Two smooth functions F,G ∶ (Rn,0) → (Rd,0) agree to first order if
∣F (x) −G(x)∣ = O(∣x∣2)

Basic calculus. Two smooth F,G ∶ (Rn,0) → (Rd,0) agree to first order iff
DF (0) =DG(0) as linear maps Rn → Rd.

Definition 8. Two smooth maps f, g ∶ (X,p) ⇢ (Y, q) “agree to first order” if in
some coordinate system ψX ∶ Rn ⇢ X and φY ∶ Rd ⇢ Y with nbhds containing p, q,
we have that φ−1Y ○f ○φX and φ−1Y ○g○φX agree to first order as germs (Rn, ψ−1X (p)) →
(Rd,0, ψ−1Y (q)).

Exercise 6. If two smooth maps f, g as above agree to first order rel. one pair of
coordinate systems, then they agree to first order rel. any other compatible pair of
coordinates systems.

The relation “agree to first order” is a well defined equivalence relation and we
can take the resulting space of equivalence classes.

Definition 9. Let c ∶ (R,0) → (Q, q) be a curve. Write c′(0) or dc/dt(0) for the
equivalence class consisting of all curve germs (R,0) → (Q, q) which agree to first
order with q.

Definition 10. An element of the tangent space at q ∈ Q is an equivalence class of
curve germs (R,0) → (Q, q) where the equivalence relation is “agree to first order”.

Now the curve germ c ∶ (R,0) → (Q, q) defines a derivation v ∶ C∞(M) → R by
differentiation along the curve:

(5) f ↦ d

dt
(f ○ c)∣t=0 ∶= v[f]

Exercise 7. Verify that if two curve germs through q agree to first order at q then
the derivations they define via eq (5) are equal.

A coordinate computation now shows that every element of TqQ, viewed as the
dual space to mq/m2

q, arises as directional derivative along a curve.
The facts just described yield the curve definition of the tangent space.

We could define the tangent space at q as the space whose elements are
first order equivalence classes of curves passing through q. Equation 5
relates the curve and the derivation def’n. In words: tangent vectors
ARE directional derivatives.

BASES. Under this isomorphism between the derivation definiton and the curve
definition of the tangent space, the basis elements ∂

∂xi of the derivation definition

correspond to the tangent vectors of the “ith coordinate curves” ci(t) = ψ−1(P +
tei) = ψ(0, . . . ,0, t,0, . . . ,0) where ei = (0, . . . ,0,1,0, . . . ,0) is the usual standard
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basis of Rn, and where ψ ∶ (Q, q) → (Rn, P ) is our coordinate chart with coordinates
xi.

SUMMARY: There are TWO WAYS to think of tangent vectors, so far, (1) as
derivations on functions or (2) as equivalence classes of curves. The space of all
tangent vectors at a point to an n-manifold at a point p is an n dimensional real
vector space denoted TpM , with basis ∂

∂xi , i = 1, . . . , n, where xi are coordinates at
p. Composition of a function f with a curve c realizes the canonical duality pairing
T ∗pM × TpM → R:

d

dt
∣t=0f ○ c = df(p)(v) = v[f], where df(p) ∈ T ∗pM,v = c′(0) ∈ TpM.

4. Operational definition of Tangent space.

Instead of trying to say what a tangent vector is, we only say how it transforms
when we change from one coordinate chart to another. This is the most useful
definition, computationally. It has the disadvantage of giving us no picture of what
a tangent vector actually is.

We know what a vector in Rn is. Viewed rel. a chart φ ∶ M ⇢ Rn a tangent
vector at p is a vector Vφ ∈ Rn that we think of as being attached to the point
φ(p) ∈ Rn. If ψ ∶ M ⇢ Rn is another chart containing p, then in that chart, the
same vector will be represented by a different vector Vψ, now attached at ψ(p).
The two vectors are related by the differential of the transition function between
the two coordinates:

(6) Vψ = d(ψ ○ φ−1)φ(p)Vψ
If φ = (x1, . . . , xn) then ∂

∂xi is the notation we reserve for the vector in TqQ
whose representative in the φ-chart is the standard basis vector ei, consisting of
all zeros except a 1 in the ith place. What does this same vector look like in the
ψ chart whose coordinates are (y1, y2, . . . , yn)? According to eq (6), we have that
ei in the φ-chart corresponds to the vector d(ψ ○ φ−1)φ(p)ei in the ψ-chart. Now

ej in the ψ chart corresponds to the vector ∂
∂yj

in TqM . Thus, the transformation

formula yields the relation

∂

∂xi
= Σj

∂yj

∂xi
∣φ(p) ∂

∂yj

To see this, note that ψ ○ φ−1 has the coordinate expression yi = yi(x1, . . . , xn).
Commentary. This last definition is the most computationally useful, but hides

the geometry.

5. Normal forms lemmas

Lemma 1. Let f ∶ M ⇢ R be a smooth function defined in a nbhd of p ∈ M and
suppose that df(p) ≠ 0. Then there exist coordinates x1, . . . , xn about p such that in
this coordinate nbhd

f = x1
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SUMMARY OF THIS LEMMA: “Away from critical points, , all functions are
locally the same”

Lemma 2. Let v ∈ TpM with v ≠ 0. Then there exist coordinates x1, . . . , xn about
p such that

v = ∂

∂x1
∣p.

Lemma 3 (Straightening Lemma. Sometimes called flowbox lemma). Let X be a
vector field defined in a nbhd of p ∈M which does not vanish at p. Then there exist
coordinates x1, . . . , xn about p such that in this coordinate nbhd

X = ∂

∂x1

SUMMARY OF STRAIGHTENING LEMMA: “Away from zeros, all vector
fields are locally the same”

Proof of Lemma 1. Let y1, . . . yn be arbitrary smooth coordinates about
p. Then, since df(p) = Σ ∂f

∂yi
dyi we have that at least one of the partial deriva-

tives ∂f
∂yi

∣p ≠ 0. Relabel this coordinate index if necessary so that it is i = 1 by

switching the index i and 1 in the case that ∂f
∂y1

∣p = 0. Define a map Rn ⇢ Rn by

(y1, y2, . . . , yn) ↦ (f(y1, y2, . . . , yn), y2, y3, . . . , yn)(x1, x2, . . . , xn). Then the Jaco-
bian of this transformation is

⎛
⎜⎜⎜⎜⎜⎜
⎝

∂f
∂y1

∂f
∂y2

∂f
∂y2

∂f
∂y2

⋯ ∂f
∂yn

0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

with determinant ∂f
∂y1

. Hence this map is a local diffeo Rn → Rn near φ(p). Com-

posing φ with this coordinate change yields coordinates (x1, x2, . . . , xn) for which
f = x1.

QED, lemma 1.
Pf of Lemma 2. Choose any chart φ = (u1, u2, . . . , un) about p. Since v ≠ 0, in

this chart v is represented by some nonzero vector vφ ∈ Rn. Let A be an invertible
linear tranformation taking vφ to e1. Then ψ = A○φ is a new chart, and the ψ to φ
transition map is A. Thus in the ψ chart we have that vψ = Avφ = e1, which means

in that if ψ = (x1, x2, . . . , xn) that v = ∂
∂x1 .

Proof of Straightening lemma. Since X(p) ≠ 0, by lemma 2 we can find coor-
dinates u1, u2, . . . about p such tht X(p) = ∂

∂u1 . Now consider the (local) hypersur-

face u1 = 0 in M which is coordinatized by u2, . . . , un according to (u2, u2, . . . , un) =
φ−1(0, u2, u3, . . . , un). Let Φt ∶ M ⇢ M denote the flow of X. Define F ∶ Rn → M
by F (x1, x2, . . . , xn) = Φx1φ−1(0, x2, x3, . . . , xn). I claim that dF0 is invertible ,
and hence by the inverse function theorem has an inverse and so F −1 are good
coordinates. The xi are our desired coordinates.

To show dF0 is invertible we compute from the definitions. dF0(e1) = d
dt
∣t=0Φt(φ−1(0)) =

X(p) = ∂
∂x1 . And for i > 0 we have dF0(ei) = d(Φ0)dφ−10 (ei) = ∂

∂xi . Thus dF0 maps
basis to basis and so is invertible and yields good coordinates.

Finally, since d
dt

Φt(q)∣t=0 =X(q) and ∂
∂x1 = dF(x1,x2,...,xn)

(e1) = d
dh

∣h=0Φx1+h(φ−1(0, x2, . . . , xn))
we see that in the new coordinates ∂

∂x1 =X. QED


