THE STRAIGHTENING LEMMA AND OTHER NORMAL FORM LEMMAS.

RMONT

1

Lemma 1. Let $f : M \to \mathbb{R}$ be a smooth function defined in a nbhd of $p \in M$ and suppose that $df(p) \neq 0$. Then there exist coordinates x^1, \ldots, x^n about p such that in this coordinate nbhd

 $f = x^1$

SUMMARY OF THIS LEMMA: "Away from critical points, , all functions are locally the same"

Lemma 2. Let $v \in T_pM$ with $v \neq 0$. Then there exist coordinates x^1, \ldots, x^n about p such that

$$v = \frac{\partial}{\partial x^1}|_p.$$

Lemma 3 (Straightening Lemma. Sometimes called flowbox lemma). Let X be a vector field defined in a nbhd of $p \in M$ which does not vanish at p. Then there exist coordinates x^1, \ldots, x^n about p such that in this coordinate nbhd

$$X = \frac{\partial}{\partial x^1}$$

SUMMARY OF STRAIGHTENING LEMMA: "Away from zeros, all vector fields are locally the same"

Proof of Lemma 1. Let $y^1, \ldots y^n$ be arbitrary smooth coordinates about p. Then, since $df(p) = \sum \frac{\partial f}{\partial y^i} dy^i$ we have that at least one of the partial derivatives $\frac{\partial f}{\partial y^i} | p \neq 0$. Relabel this coordinate index if necessary so that it is i = 1 by switching the index i and 1 in the case that $\frac{\partial f}{\partial y^1} | p = 0$. Define a map $\mathbb{R}^n \to \mathbb{R}^n$ by $(y_1, y_2, \ldots, y_n) \mapsto (f(y^1, y^2, \ldots, y^n), y^2, y^3, \ldots, y^n)(x^1, x^2, \ldots, x^n)$. Then the Jacobian of this transformation is

($\frac{\partial f}{\partial y^1}$	$\frac{\partial f}{\partial y^2}$	$\frac{\partial f}{\partial y^2}$	$\frac{\partial f}{\partial y^2}$		$\frac{\partial f}{\partial y^n}$	
	Ō	1	Ō	Ō		Ō	
	0	0	1	0		0	
	÷	÷	÷	÷	÷	÷	
	0	0	0	0		1	J

with determinant $\frac{\partial f}{\partial y^1}$. Hence this map is a local diffeo $\mathbb{R}^n \to \mathbb{R}^n$ near $\phi(p)$. Composing ϕ with this coordinate change yields coordinates (x^1, x^2, \ldots, x^n) for which $f = x^1$.

QED, lemma 1.

RMONT

Pf of Lemma 2. Choose any chart $\phi = (u^1, u^2, \dots, u^n)$ about p. Since $v \neq 0$, in this chart v is represented by some nonzero vector $v_{\phi} \in \mathbb{R}^n$. Let A be an invertible linear transformation taking v_{ϕ} to e_1 . Then $\psi = A \circ \phi$ is a new chart, and the ψ to ϕ transition map is A. Thus in the ψ chart we have that $v_{\psi} = Av_{\phi} = e_1$, which means in that if $\psi = (x^1, x^2, \dots, x^n)$ that $v = \frac{\partial}{\partial x^1}$.

Proof of Straightening lemma. Since $X(p) \neq 0$, by lemma 2 we can find coordinates u^1, u^2, \ldots about p such the $X(p) = \frac{\partial}{\partial u^1}$. Now consider the (local) hypersurface $u^1 = 0$ in M which is coordinatized by u^2, \ldots, u^n according to $(u^2, u^2, \ldots, u^n) =$ $\phi^{-1}(0, u^2, u^3, \dots, u^n)$. Let $\Phi_t : M \to M$ denote the flow of X. Define $F : \mathbb{R}^n \to M$ by $F(x^1, x^2, ..., x^n) = \Phi_{x^1} \phi^{-1}(0, x^2, x^3, ..., x^n)$. I claim that dF_0 is invertible, and hence by the inverse function theorem has an inverse and so F^{-1} are good coordinates. The x^i are our desired coordinates.

To show dF_0 is invertible we compute from the definitions. $dF_0(e_1) = \frac{d}{dt}|_{t=0} \Phi_t(\phi^{-1}(0)) =$ $X(p) = \frac{\partial}{\partial x^{1}}. \text{ And for } i > 0 \text{ we have } dF_{0}(e_{i}) = d(\Phi_{0})d\phi_{0}^{-1}(e_{i}) = \frac{\partial}{\partial x^{i}}. \text{ Thus } dF_{0} \text{ maps}$ basis to basis and so is invertible and yields good coordinates. Finally, since $\frac{d}{dt}\Phi_{t}(q)|_{t=0} = X(q)$ and $\frac{\partial}{\partial x^{1}} = dF_{(x_{1},x_{2},...,x_{n})}(e_{1}) = \frac{d}{dh}|_{h=0}\Phi_{x_{1}+h}(\phi^{-1}(0,x^{2},...,x^{n}))$ we see that in the new coordinates $\frac{\partial}{\partial x^{1}} = X. \text{ QED}$