THE STRAIGHTENING LEMMA AND OTHER NORMAL FORM
LEMMAS.
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Lemma 1. Let f: M -> R be a smooth function defined in a nbhd of p € M and
suppose that df (p) # 0. Then there exist coordinates x',...,x" about p such that in
this coordinate nbhd

f=a'
SUMMARY OF THIS LEMMA: “Away from critical points, , all functions are
locally the same”

Lemma 2. Let v e T,M with v #0. Then there exist coordinates b, ..., x" about
p such that
0
v = @hg.

Lemma 3 (Straightening Lemma. Sometimes called flowbox lemma). Let X be a
vector field defined in a nbhd of p € M which does not vanish at p. Then there exist
coordinates x', ... x™ about p such that in this coordinate nbhd

0
ozt
SUMMARY OF STRAIGHTENING LEMMA: “Away from zeros, all vector
fields are locally the same”
Proof of Lemma 1. Let y',...y" be arbitrary smooth coordinates about
p. Then, since df(p) = X g yf dy® we have that at least one of the partial deriva-
tives g J p # 0. Relabel this coordinate index if necessary so that it is ¢ = 1 by

switching the index ¢ and 1 in the case that aa—yfl|p = 0. Define a map R" -> R" by

(Y1, 92, yn) = (Fyh w2 y™), 9% 92, y™) (2t 22, ... 2™). Then the Jaco-
bian of this transformation is

of of of of of
ayt  0y? 9y?  9y? oyn
0 1 0 0 0
0 0 1 0 0
0 0 0 o - 1
with determinant g—yfl. Hence this map is a local diffeo R™ — R™ near ¢(p). Com-
posing ¢ with this coordinate change yields coordinates (z!,22,...,2") for which
f=at

QED, lemma 1.
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Pf of Lemma 2. Choose any chart ¢ = (u*,u?,...,u") about p. Since v # 0, in
this chart v is represented by some nonzero vector vy € R". Let A be an invertible
linear tranformation taking v4 to e;. Then 9 = Ao ¢ is a new chart, and the 9 to ¢
transition map is A. Thus in the ¢ chart we have that vy, = Avg = e1, which means
in that if ¢ = (2!,2%,...,2") that v = %.

Proof of Straightening lemma. Since X (p) # 0, by lemma 2 we can find coor-
dinates u',u?,... about p such tht X (p) = %. Now consider the (local) hypersur-
face u' = 0 in M which is coordinatized by u?, ..., u™ according to (u?,u?, ... ,u") =
¢ 10,u?,ud,...,u™). Let ®; : M -> M denote the flow of X. Define F : R" - M
by F(z',2%,...,2") = ®,1¢071(0,2%,23,...,2"). I claim that dF} is invertible ,
and hence by the inverse function theorem has an inverse and so F~! are good
coordinates. The ! are our desired coordinates.

To show dFy is invertible we compute from the definitions. dFy(e;) = %h:o@t(cﬁ_l (0)) =
X(p) = %. And for i > 0 we have dFy(e;) = d(®o)dgy*(ei) = %. Thus dFy maps
basis to basis and so is invertible and yields good coordinates.

Finally, since %@t(q)hzo =X (q) and % =dF(z, o,,...20)(€1) = %|h:0q’x1+h(¢_1(0, 22,...,2"))
we see that in the new coordinates a%l = X. QED



