
THE STRAIGHTENING LEMMA AND OTHER NORMAL FORM

LEMMAS.
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Lemma 1. Let f ∶ M ⇢ R be a smooth function defined in a nbhd of p ∈ M and
suppose that df(p) ≠ 0. Then there exist coordinates x1, . . . , xn about p such that in
this coordinate nbhd

f = x1

SUMMARY OF THIS LEMMA: “Away from critical points, , all functions are
locally the same”

Lemma 2. Let v ∈ TpM with v ≠ 0. Then there exist coordinates x1, . . . , xn about
p such that

v = ∂

∂x1
∣p.

Lemma 3 (Straightening Lemma. Sometimes called flowbox lemma). Let X be a
vector field defined in a nbhd of p ∈M which does not vanish at p. Then there exist
coordinates x1, . . . , xn about p such that in this coordinate nbhd

X = ∂

∂x1

SUMMARY OF STRAIGHTENING LEMMA: “Away from zeros, all vector
fields are locally the same”

Proof of Lemma 1. Let y1, . . . yn be arbitrary smooth coordinates about
p. Then, since df(p) = Σ ∂f

∂yi
dyi we have that at least one of the partial deriva-

tives ∂f
∂yi
∣p ≠ 0. Relabel this coordinate index if necessary so that it is i = 1 by

switching the index i and 1 in the case that ∂f
∂y1
∣p = 0. Define a map Rn ⇢ Rn by

(y1, y2, . . . , yn) ↦ (f(y1, y2, . . . , yn), y2, y3, . . . , yn)(x1, x2, . . . , xn). Then the Jaco-
bian of this transformation is

⎛
⎜⎜⎜⎜⎜⎜
⎝

∂f
∂y1

∂f
∂y2

∂f
∂y2

∂f
∂y2

⋯ ∂f
∂yn

0 1 0 0 ⋯ 0
0 0 1 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 ⋯ 1

⎞
⎟⎟⎟⎟⎟⎟
⎠

with determinant ∂f
∂y1

. Hence this map is a local diffeo Rn → Rn near φ(p). Com-

posing φ with this coordinate change yields coordinates (x1, x2, . . . , xn) for which
f = x1.

QED, lemma 1.
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Pf of Lemma 2. Choose any chart φ = (u1, u2, . . . , un) about p. Since v ≠ 0, in
this chart v is represented by some nonzero vector vφ ∈ Rn. Let A be an invertible
linear tranformation taking vφ to e1. Then ψ = A○φ is a new chart, and the ψ to φ
transition map is A. Thus in the ψ chart we have that vψ = Avφ = e1, which means

in that if ψ = (x1, x2, . . . , xn) that v = ∂
∂x1 .

Proof of Straightening lemma. Since X(p) ≠ 0, by lemma 2 we can find coor-
dinates u1, u2, . . . about p such tht X(p) = ∂

∂u1 . Now consider the (local) hypersur-

face u1 = 0 in M which is coordinatized by u2, . . . , un according to (u2, u2, . . . , un) =
φ−1(0, u2, u3, . . . , un). Let Φt ∶ M ⇢ M denote the flow of X. Define F ∶ Rn → M
by F (x1, x2, . . . , xn) = Φx1φ−1(0, x2, x3, . . . , xn). I claim that dF0 is invertible ,
and hence by the inverse function theorem has an inverse and so F −1 are good
coordinates. The xi are our desired coordinates.

To show dF0 is invertible we compute from the definitions. dF0(e1) = d
dt
∣t=0Φt(φ−1(0)) =

X(p) = ∂
∂x1 . And for i > 0 we have dF0(ei) = d(Φ0)dφ−10 (ei) = ∂

∂xi . Thus dF0 maps
basis to basis and so is invertible and yields good coordinates.

Finally, since d
dt

Φt(q)∣t=0 =X(q) and ∂
∂x1 = dF(x1,x2,...,xn)(e1) = d

dh
∣h=0Φx1+h(φ−1(0, x2, . . . , xn))

we see that in the new coordinates ∂
∂x1 =X. QED


