THE STRAIGHTENING LEMMA AND OTHER NORMAL FORM LEMMAS.

RMONT

1
Lemma 1. Let $f: M \rightarrow \mathbb{R}$ be a smooth function defined in a nbhd of $p \in M$ and suppose that $d f(p) \neq 0$. Then there exist coordinates x^{1}, \ldots, x^{n} about p such that in this coordinate nbhd

$$
f=x^{1}
$$

SUMMARY OF THIS LEMMA:"Away from critical points, , all functions are locally the same"
Lemma 2. Let $v \in T_{p} M$ with $v \neq 0$. Then there exist coordinates x^{1}, \ldots, x^{n} about p such that

$$
v=\left.\frac{\partial}{\partial x^{1}}\right|_{p}
$$

Lemma 3 (Straightening Lemma. Sometimes called flowbox lemma). Let X be a vector field defined in a nbhd of $p \in M$ which does not vanish at p. Then there exist coordinates x^{1}, \ldots, x^{n} about p such that in this coordinate nbhd

$$
X=\frac{\partial}{\partial x^{1}}
$$

SUMMARY OF STRAIGHTENING LEMMA: "Away from zeros, all vector fields are locally the same"

Proof of Lemma 1. Let $y^{1}, \ldots y^{n}$ be arbitrary smooth coordinates about p. Then, since $d f(p)=\Sigma \frac{\partial f}{\partial y^{i}} d y^{i}$ we have that at least one of the partial derivatives $\left.\frac{\partial f}{\partial y^{i}} \right\rvert\, p \neq 0$. Relabel this coordinate index if necessary so that it is $i=1$ by switching the index i and 1 in the case that $\left.\frac{\partial f}{\partial y^{1}}\right|_{p}=0$. Define a map $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ by $\left(y_{1}, y_{2}, \ldots, y_{n}\right) \mapsto\left(f\left(y^{1}, y^{2}, \ldots, y^{n}\right), y^{2}, y^{3}, \ldots, y^{n}\right)\left(x^{1}, x^{2}, \ldots, x^{n}\right)$. Then the Jacobian of this transformation is

$$
\left(\begin{array}{cccccc}
\frac{\partial f}{\partial y^{1}} & \frac{\partial f}{\partial y^{2}} & \frac{\partial f}{\partial y^{2}} & \frac{\partial f}{\partial y^{2}} & \cdots & \frac{\partial f}{\partial y^{n}} \\
0 & 1 & 0 & 0 & \cdots & 0 \\
0 & 0 & 1 & 0 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 1
\end{array}\right)
$$

with determinant $\frac{\partial f}{\partial y^{1}}$. Hence this map is a local diffeo $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ near $\phi(p)$. Composing ϕ with this coordinate change yields coordinates $\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ for which $f=x^{1}$.

QED, lemma 1.

Pf of Lemma 2. Choose any chart $\phi=\left(u^{1}, u^{2}, \ldots, u^{n}\right)$ about p. Since $v \neq 0$, in this chart v is represented by some nonzero vector $v_{\phi} \in \mathbb{R}^{n}$. Let A be an invertible linear tranformation taking v_{ϕ} to e_{1}. Then $\psi=A \circ \phi$ is a new chart, and the ψ to ϕ transition map is A. Thus in the ψ chart we have that $v_{\psi}=A v_{\phi}=e_{1}$, which means in that if $\psi=\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ that $v=\frac{\partial}{\partial x^{1}}$.

Proof of Straightening lemma. Since $X(p) \neq 0$, by lemma 2 we can find coordinates u^{1}, u^{2}, \ldots about p such tht $X(p)=\frac{\partial}{\partial u^{1}}$. Now consider the (local) hypersurface $u^{1}=0$ in M which is coordinatized by u^{2}, \ldots, u^{n} according to $\left(u^{2}, u^{2}, \ldots, u^{n}\right)=$ $\phi^{-1}\left(0, u^{2}, u^{3}, \ldots, u^{n}\right)$. Let $\Phi_{t}: M \rightarrow M$ denote the flow of X. Define $F: \mathbb{R}^{n} \rightarrow M$ by $F\left(x^{1}, x^{2}, \ldots, x^{n}\right)=\Phi_{x^{1}} \phi^{-1}\left(0, x^{2}, x^{3}, \ldots, x^{n}\right)$. I claim that $d F_{0}$ is invertible , and hence by the inverse function theorem has an inverse and so F^{-1} are good coordinates. The x^{i} are our desired coordinates.

To show $d F_{0}$ is invertible we compute from the definitions. $d F_{0}\left(e_{1}\right)=\left.\frac{d}{d t}\right|_{t=0} \Phi_{t}\left(\phi^{-1}(0)\right)=$ $X(p)=\frac{\partial}{\partial x^{1}}$. And for $i>0$ we have $d F_{0}\left(e_{i}\right)=d\left(\Phi_{0}\right) d \phi_{0}^{-1}\left(e_{i}\right)=\frac{\partial}{\partial x^{i}}$. Thus $d F_{0}$ maps basis to basis and so is invertible and yields good coordinates.

Finally, since $\left.\frac{d}{d t} \Phi_{t}(q)\right|_{t=0}=X(q)$ and $\frac{\partial}{\partial x^{1}}=d F_{\left(x_{1}, x_{2}, \ldots, x_{n}\right)}\left(e_{1}\right)=\left.\frac{d}{d h}\right|_{h=0} \Phi_{x_{1}+h}\left(\phi^{-1}\left(0, x^{2}, \ldots, x^{n}\right)\right)$ we see that in the new coordinates $\frac{\partial}{\partial x^{1}}=X$. QED

