
AN ALGEBRAIC PERSPECTIVE ON MANIFOLDS, THEIR

TANGENT VECTORS, COVECTORS, AND

DIFFEOMORPHISMS.

RMONT

The theory of smooth manifolds takes some of its cues from Algebraic Geometry
where one replaces a space under study by the ring of functions on that space.
Also relevant is the Gelfand-Naimark structure theorem regarding commutative
C∗ algebras.

1. Ring of Smooth function and its maximal ideal.

Recall that in a ring we can add and multiply. If the ring is commutative then
its arithmetic in obeys the rules of addition and multiplication we learned when we
first took algebra. If the ring contains a unit 1, and all scalar multiples c1 = c, c ∈ R
of this unit then the ring forms an algebra over R – a vector space over R with a
multiplication structure on its vectors.

The vector space of all smooth functions on a manifold M forms a commutative
ring – an R algebra – denoted C∞(M). Addition and multiplication in this ring
is defined as usual, i.e pointwise, so that, for example (f + g)(p) = f(p) + g(p), for
f, g ∈ C∞(M), p ∈M . The unit 1 of the ring is the function identically equal to 1.

We recall that an ‘ideal’ S of a ring A is a subring S ⊂ A which is closed under
multiplication by elements in A: if f ∈ S and g ∈ A then fg ∈ S.

Exer. Let X ⊂ M be any subset. Show that the set of functions f ∈ R which
vanish on X is an ideal.

Recall that a ‘maximal ideal’ is an ideal S ⊂ A with the property that any other
ideal S ⊂ S′ ⊂ A is either equal to S or to all of A.

Basic exercise in ring theory: An ideal m ⊂ A is maximal if and only if the
quotient ring A/m is a field.

Exercise 1. For each p ∈M the evaluation map f ↦ f(p) is a ring homomorphism
A → R whose kernel is mp the ideal of smooth functions vanishing at p. But then
A/mp ≅ R, so by Basic Exercise , mp is a maximal ideal.

Fact/ mini-research project. Every maximal ideal of C∞(M) has the form,
mp, p ∈M , provided M is compact. If M in non-compact there are other maximal
ideals. (See “non-principal ultrafilters”.)

Some basic culture. The celebrated Gelfand representation theorem con-
cerns an analogous fact when X is compact Hausdorff and the algebra is the C-
algebra C0(X,C) of continuous C-valued functions. The closed maximal ideals of
C0(X, ,C) are of the form mp = {f ∈ C0(X,C) ∶ f(p) = 0}. The theorem of Gelfand
(or Gelfand-Naimark) asserts that every commutative C∗-algebra A with unit is
of the form C0(X,C) for some compact topological space X. C∗ algebras enjoys
two additional structures, (i) a normed topology and (2) a *-operation and with
these structures C0(X,C) becomes a “commutative C∗ algebra. I will let you look
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up the definitions. The space X is called the “spectrum” or ‘Gelfand dual” of the
algebra A.

Example of Gelfand-Naimark. Suppose that T ∶ Cn → Cn is a self-adjoint linear
transformation. Let A be the set of all operators S ∶ Cn → Cn which have the form
S = p(T ) for p a polynomial with complex coefficients. Then A is a commutative
C∗ algebra, aa subalgebra of the algebra of all linear transformations. The space
X is a finite subset of the real line, namely the spectrum (set of eigenvalues) of T .

2. Vector fields as Derivations.

From beginning calculus we know that the operation f ↦Df ∶= df/dx is a linear
operator on the algebra A = C∞(R). In addition to being linear, it satisfies the
Liebnitz identity:

(1) D(fg) = fDg + gDf, for all f, g ∈ A

Definition 1. Let K be a field and A a K algebra with unit. Then a derivation on
A is a K-linear operator D ∶ A→ A satisfying the Liebnitz identity , eq (1).

We can now give a definition of ‘vector field on a manifold”.

Definition 2. Let A = C∞(Q) be the algebra of smooth functions on a manifold
Q. Then a vector field is a derivation of A. The space of all vector fields forms is
denoted by χ(Q) or by Γ(TQ).

Exercise 2. Prove that if D ∶ A → A is a derivation of A, then D(1) = 0 where 1
is the unit of the commutative K-algebra A

Example 1. The partial derivatives ∂
∂xi are derivations of A = C∞(Rn).

Exercise 3. Prove that If D ∶ A→ A is a derivation of A, and if h ∈ A then hD is
also a derivation, where (hD)(g) = h(Dg). Show that the vector space Der(A) of
all derivations of A is a module over A.

It follows from the previous example and the exercise above that

(2) X = Σni=1X
i ∂

∂xi

are derivations of Rn.

Theorem 1. Any vector field on Rn can uniquely be expressed in the form of eq
(2) where the Xi are smooth functions on Rn

3. Tangent Space. Cotangent space, algebraic definitions.

If X is a smooth vector field on M , and q ∈ M then X(q) should be a ‘vector’
attached at q. The vector space to which it is attached is denoted TqM and called
the tangent space at q. Let us set

v =X(q) ∈ TqM

and agree that the meaning of v is as a linear map v ∶ C∞(M) → R defined by
v[f] =X[f](q). From X[fg] = fX[g] + gX[f] we see that

(3) v[fg] = f(q)v[g] + g(q)v[f]

This suggests the definition:
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Definition 3. The tangent space at q ∈ M is the space of linear functionals
C∞(M)→ R satisfying the additional derivation condition of eq (3).

Now please observe that if f, g ∈ mp, the ideal of functions vanishing at p, then
v[fg] = 0. The linear span of functions of this form fg, f, g ∈ mp is denoted m2

p and

is a subalgebra: m2
p ⊂ mp ⊂ C

∞(M).. By linearity v vanishes on m2
p. Furthermore,

note that if f ∈ C∞(M) then f − f(q) = f − f(q)1 ∈ mq and that v[f] = v[f − f(q)]
since v[1] = 0. We have proved:

Proposition 1. Each v ∈ TqM induces a linear map mp/m
2
q → R, and this linear

functional uniquely determines v

The propositiion asserts that the existence of a canonical linear injection TqM →

(mq/m
2
q)
∗. Our next goal is to show that this linear injection is onto, so an isomor-

phism.
Some terminology is in order.

Definition 4. The cotangent space at T ∗qM at q is mq/m
2
q. for the subalgebra of

C∞(M) consisting of all functions

Exercise 4. , For q = 0 ∈ M = Rd show that m2
o consists of all smooth functions

whose first order Taylor expansion vanishes at 0. More generally, for k > 0 an
integer show that mk+10 consists of all smooth functions whose kth order Taylor ex-
pansion at 0 is identically zero. And show that C∞(Rd)/mk+10 can be identified with
the space of degree k polynomials on Rd, i.e., of kth order Taylor approximations.

As a consequence of the exercise we find:

Proposition 2. T ∗qM is a real vector space of dimension n = dim(M). Coordinates

x1, . . . , xn defined in a nbhd of q induce a basis denoted dx1, . . . dxn and defined
within the proof.

Proof. Let x1, . . . , xn be coordinates centered at p. Extend them to all of M
by ‘bumping them off” using a bump function β. By this I mean replace xii by the
function βxi defined on a nbhd U of p where β is identically one in a nbhd of p and
identically 0 outside the coordinate chart, so that we exted βxi be be zero off this
coordinate nbhd. Now, use the same symbol xi for βxi. Basic Taylor series: If
f(p) = 0, then near p we have f = Σaixi+Σbijxixj+O(x3). Thus f ≡ Σaix

i(modm2
p)

and the xi mod m2
p form a basis for T ∗pM .

The dual basis to dxi is written ∂
∂xi . Each ∂

∂xi acts on C∞(M) by expressing

f ∈ C∞(M) in the local coordinates xi and taking the resulting partial derivative.
So if φ ∶ Rn ⇢ M is the inverse of the coordinate chart whose components are
(x1, . . . , xn) then we set

∂

∂xi
[f] =

∂(f ○ φ)

∂xi
∣φ−1(q).

Now, each ∂
∂xi acts as a derivation, and they are linearly independent. We have

proved that the canonical map TqM → (mq/m
2
q)
∗ is onto, and hence an isomorphism.

4. Summary

Coordinates xi at q induce a basis dxi for the cotangent space T ∗q Q and a dual

basis ∂
∂xi fo the tangent space TqQ at q.

********************************
OVERFLOW ¿...
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5. Derivations and the tangent space.

Definition 5. A derivation v on a commutative algebra A over R is an R- linear
map v ∶ A → A which in addition satisfies the Leibnitz (product) rule v(fg) =

fv(g) + gv(f).

PROVISIONAL DEF. A vector field on M is a derivation of the commutative
ring C∞(M).

In Rn. If X = (X1, . . . ,Xn) ∶ Rn → Rn is a vector field then the corresponding
derivation is the associated directional derivative, written f ↦X[f] where

X[f](x) = ΣXi
(x)

∂f

∂xi
∣x ∶=X(x) ⋅ ∇f(x)

Localizing at a point p:

Definition 6. If mp ⊂ A is a maximal ideal with quotient field R ,write f ↦ f(p)
for the canonical identification A/mp → R. Then by a “derivation at p” we mean a
linear functional vp ∶ A→ R satisfying vp(fg) = f(p)vp(g) + g(p)vp(f).

To go from vector fields to tangent vectors from this perspective, if v ∶ C∞(M)→

C∞(M) is a derivation, we define the corresponding tangent vector at p by the
formula vp(f) = v(f)(p).

Exercise. For any derivation, and for any derivation at p we have that vp(1) = 1.
HInt: 1 = 1 ⋅ 1. Now use Leibnitz.

Exercise. For any derivation vp at p we have that vp(f) = vp(f − f(p)1) and so
v is completely determined by its values on mp.

Exercise. For any derivation vp at p and any ψ ∈ m2
p we have that vp(ψ) = 0.

Corollary of the last two exercises. Every derivation vp at p determines, and is
completelety determined by, a linear functional mp/m

2
p → R. In other words, there

is a canonical injective linear map TpM → (mp/m
2
p).

Proposition 3. : This map is onto: every linear functional v ∈ (mp/m
2
p)
∗ deter-

mines a unique derivation. If xi are local coordinates near p then the ∂
∂xi form a

basis for TpM .

Methods of proof. Germs, localization ...

6. Germs. Curve germs as tangent vectors.

We would like to do coordinate computations. If xi are local coordinates at p
then dxi, i = 1, . . . , n should be a basis for T ∗pM and ∂

∂xi , i = 1, . . . , n should be

a basis for TpM . But the xi are NOT elements of C∞(M) since they are only
defined in a nbhd of p and not on all of M . We could fix this ‘problem’ by using
bump functions to extend the xi to all of M but this process obfuscates what is
really going on with the cotangent and tangent space. The heart of the matter only
depends on things very close to p. Functions do not need to be defined on all of
M , only near p, and as far as tangent vectors and covectors at p as they aris from
functions or derivations on functions, we do not care at all about the values of f far
away from p. To formalize this “not depending on values far from p” we introduce
the useful notion of germs.

Let p ∈ X, X a manifold. Let Y be a nother manifold. Write f ∶ (X,p) ⇢ Y
to mean that f has domain some nbhd U of p and f ∶ U → Y . If we also fix a
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point q ∈ Y then when we write f ∶ (X,p) ⇢ (Y, q) we mean that in addition to
f ∶ (X,p)⇢ Y we have f(p) = q.

Definition 7. Two smooth maps f, g ∶ (X,p) ⇢ Y have the same germ if there is
a nbhd V of p on which both f and g are defined and such that such that f ∣V = g∣V .

Exercise: The space of all germs of functions (M,p) → R forms a local ring,
denoted C∞(M)p whose unique maximal ideal consists of the germs of functions
vanishing at p which we will continue to write as mp.

Definition 8. Two smooth functions F,G ∶ (Rn,0)→ (Rd,0) agree to first order if
∣F (x) −G(x)∣ = O(∣x∣2)

Basic calculus exercise. Two smooth F,G ∶ (Rn,0)→ (Rd,0) agree to first order
iff DF (0) =DG(0) as linear maps Rn → Rd.

Definition 9. Two smooth maps f, g ∶ (X,p) ⇢ (Y, q) “agree to first order” if in
some coordinate system ψX ∶ (Rn,0) ⇢ (X,p), φ)Y ∶ (Rd,0) ⇢ (Y, q) we have that
φ−1Y ○ f ○ φX and φ−1Y ○ g ○ φX agree to first order

Exercise in def of coordinates. If two smooth maps agree to first order rel. one
pair of coordinate systems, then they agree to first order rel. any other compatible
pair of coordinates systems.

Exercise. f ∈ mp agrees to first order with g ∈ mp if and only if f − g ∈ m2
p.

Consequently, we can define T ∗pM as equivalence classes of germs of functions
f ∈ mp where two functions are equivalent if they agree to first order. By taking
f = xi where (x1, . . . , xn) are coordinates, and setting dxi = xi − xi(p) mod m2

p we
get the standard “coordinate basis” for T ∗pM .

6.1. Derivations via Curves. Tangent vectors via curves. Now that we
have the notion “agree to first order” we can define a tentative tangent space
TentativeT ′′pM to be the set of equivalence classes curve germs c ∶ (R,0) ⇢ (M,p)
where we call two such curve germs equivalent if they agree to first order. This def-
inition hides the linear structure. To recove it, we define a map into the derivations
at p.

For c ∶ (R,0)⇢ (M,p) a curve germ, show that the operation

f ↦
d

dt
∣t=0f ○ c

defines a derivation at p. Show that the derivation is zero if and only if c is agrees
to first order with the constant curve t ↦ p. Show that two curves yield the same
derivation if and only they agree to first order.

Notation: [f − f(p)]mod(m2
p) = df(p). c

′(0) = vp ∈ TpM is the equivalence class
of c and is called the tangent vector to the curve. Then

d

dt
∣t=0f ○ c = df(p)vp, df(p) ∈ T ∗pM,vp = c

′
(0) ∈ TpM

As a result we have a well-defined map TentativeTpM → Derp(M). This map
is injective and onto, consequently allowing us to add curves by adding the corre-
sponding derivations. Finally, by taking the curves to be successively the n coordi-
nate curves ci(t) = ψ(tei) = ψ(0, . . . ,0, t,0, . . . ,0), i = 1, . . . , n we see that Derp(M)

is linearly isomorphic to (mp/m
2
p)
∗, since the n tangent vectors so represented are

the partial derivative operatiors ∂
∂xi and these are precisely the dual basis to the
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coordinate-induced basis dxi for T ∗pM . This shows that TentativeTpM is canoni-
cally isomorphic to our originally defined TpM .

SUMMARY: We can think of tangent vectors as equivalence classes of curves,
or as derivations on functions, or as the dual space to T ∗pM . The space of all
tangent vectors at a point to an n-manifold at a point p is an n dimensional real
vector space denoted TpM , with basis ∂

∂xi , i = 1, . . . , n, where xi are coordinates
at p. Composition of a function with a curve realizes the canonical duality pairing
T ∗pM × TpM → R.

Definition 10. Two curve germs c1, c2 ∶ (R,0) ⇢ (M,p) have the same tangent
vector, or “agree to first order” if for all smooth function germs f ∶ (M,p)→ (R,0)
we have that the function germs (R,0) ⇢ (R,0) defined by composition, namely,
f ○ c1 and f ○ c2 have the same first derivative at 0.

Exercise 5. Two curve germs c1, c2 agree to first order if and only if their coor-
dinate representatives, φ−1 ○ c1, φ−1 ○ c2 ∶ (R,0) → (Rn,0) rel. to some coordinate
system φ centered at p have the same derivative, if and only if for every coordinate
rep ψ centered at p we have that ψ−1 ○ c1, ψ−1 ○ c2 ∶ (R,0) → (Rn,0) have the same
derivative.

A. Suppose that f, g ∈ mp are two functions which agree in a neighborhood of p.
Then vp(f) = vp(g) for any derivation at p.

Proof. f − g ∈ m2
p. (Verify !)

Approach to proof. Localization, using the idea of germs, bump functions cen-
tered at p, and coordinate independence.

We will use coordinates and localization to show that the computation at p in
an n-manifold M is identical to the computation at 0 in Rn.

We first work in Rn at 0. Let v ∈ Rn. Then v defines the curve c(t) = tv thru
0, and, by directional differentiation, a linear functional v0 ∶ C∞(Rn) → R which
sends f to v0[f] ∶= ddtt=0f(tv). From basic calulus v0 is a derivation at 0. An
easy exercise shows that the map v ↦ v0 is a linear map. In terms of standard
coordinates xi on Rn, if v = vi = (v1, . . . , vn) then v0[f] = Σi = 1nvi ∂f

∂xi ∣{x = 0}

showing that this map is an isomorphism from Rn to T0(Rn) ∶= (m0/m
2
0)
∗.

Now, if p ∈ M = Mn, we can choose a small coordinate nbhd U of p and a
bump function φ which is identically 1 near p and identically 0 off of U . Then
v(φf) = φ(p)v(f) + f(p)v(φ). But near p we have φφ = φ = 1 so that v(φ) =

2φ(p)v(φ) = 2v(φ) = 0. Thus v(φf) = v(f).
SUMMARY: Cutting off f by multiplying by a bump function with support near

p does not change the value of vp(f).
Coordinate, or curve exercises.
...

7. Automorphisms

An automorphism of a commutative algebra over R is an algebra homomomor-
phism A→ A which is invertible. The set of all automorphisms of A forms a group
Aut(A).

In the case A = C∞(M) we have a natural anti-homomorphism Diff(M) →

Aut(A): which sends a diffeo φ ∶M →M to the automorphism of “pullback by φ”,
which is to say, the operation on smooth functions f given by f ↦ φ∗f = f ○ φ.
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A one-parameter subgroup of automorphisms is a homomorphism from the real
line into Aut(A). Thus it is a one-parameter family of maps ψt ∶ A → A such that
ψ0 = id and ψt ○ ψs = ψt+s. Assuming that ψt is differentiable, we compute that its
derivative at t = 0 is a derivation.

In the case of A = C∞(M), we have that φt = exp(tv)− the flow of a vector field
v - is a one-parameter subgroup of diffeos, and hence of automorphisms.

Theorem? [Ref?] For M compact, every automorphism of C∞(M) arises as
pullback by a diffeo. Every derivation of A arises from a vector field.

8. Modules and Bundles

Recall the notion of a module over a ring. A module M is to a ring A as a
vector space V is to its underlying field of scalars F . What this mean is that
M forms an additive group, and that A acts on M by a “scalar multiplication”:
A ×M → M , written (a,m) ↦ (am) satisfying the obvious axioms: a(m1 +m2) =

am1 + am2, a1(a2m) = (a1a2)m.
The smooth sections Γ(E)of a smooth vector bundle E → M form a module

over A = C∞(M). We would like to say that “modules over C∞(M) are in natural
bijection with smooth vector bundles over M”’. This is not true. But it becomes
true once we require our modules to be “projective” and “finitely generated” . A
version of the Serre-Swan theorem asserts that over the category of smooth compact
manifolds, this bijection holds. In other words, if V ect(M) is the category of smooth
finite-dimensional vector bundles over a compact manifold space M , then the map
E ↦ Γ(E) which sends a vector bundle to its space of smooth sections, defines
a functor onto the space of finitely generated projective modules over C∞(M). I
think you can guess what it means for a module to be “finitely generated”. ( It is
essentially the same meaning as that of a a vector space being finite dimensional.)
The definition of “projective” is more subtle and I will let you look up the various
equivalent definitions. Also, please see the wiki entry on “Serre-Swan theorem” ,
which is quite decent.

9. Tangent and Cotangent Functor

If F ∶ M → N is smooth, we have an associated smooth map TF ∶ TM → TN
which is a vector bundle map over f . It sends TmM to TF (m)N linearly. This linear
map based at m is written variously dFm or F∗m, as in

dFm ∶ TmM → TF (m)N.

On the level of curves it can be defined as the map sending vm = c′(0) ∈ TmM to
the derivative of the curve F ○ c at t = 0. Note that this image curve F ○ c indeed
passes through F (m) at t = 0.

The chain rule becomes the obvious thing: if F ∶ M → N and G ∶ N → Y then
T (G ○ F ) = TG ○ TF ∶ TM → TY , and is a vector bundle map over G ○ F .

EXER. Define the corresponding map on the cotangent fibers: dF ∗
m ∶ T ∗f(m)N →

T ∗mM . Verify that dF ∗
m is the linear algebraic dual of dFm.


