VECTOR FIELDS HOMEWORK assigments.

1. Let X be a vector field on a manifold, and p a point of the manifold and suppose that $X(p) \neq 0$. Prove that there is another vector field Y on the manifold such that the equality $[X, Y]=X$ holds in a neighborhood of p.
2. Suppose that X is a vector field on a manifold M, and p is a point of the manifold. Use the coordinate definitions of vector fields ("An n-component vector X^{1}, \ldots, X^{n} depending on the choice of coordinates which transforms under changes of variables like... ") to prove:
(i) If $X(p)=0$ then the first derivative of X at p is well-defined and can be viewed as a linear map $D X_{p}: T_{p} M \rightarrow T_{p} M$.
(ii) If $X(p) \neq 0$ then the first derivative of X at p, depends on the choice of coordinates and hence is not well-defined.
3. $G l(2, \mathbb{R})$ acts on $\mathbb{R P}^{1}$. Write the action as $(g,[x, y]) \mapsto g \cdot[x, y]=[a x+b y, c x+$ $d y]$. By the standard affine chart let us mean the map $x \mapsto[x, 1]$ or its inverse.
A) Verify that this action is the standard linear fractional transformation upon being viewed in the standard affine chart.
B) The associated infinitesimal action is the linear map $\sigma: g l(2, \mathbb{R}) \rightarrow \chi\left(\mathbb{R} \mathbb{P}^{2}\right)$ which sends a 2 by 2 matrix $\xi \in g l(2, \mathbb{R})$ to the vector field $\sigma(\xi)$ on $\mathbb{R P}^{1}$, the infinitesimal generator of this action: $\sigma(\xi)([x, y])=\left.\frac{d}{d t}\right|_{t=0} \exp (t \xi) \cdot[x, y]$. Write out the infinitesimal generator map explicitly by writing out, rel. to the standard affine coordinate, the four vector fields corresponding to the image of the standard basis $E_{1}, E_{2}, E_{3}, E_{4}$ of $g l(2, \mathbb{R})$ under σ. Your answers will be of the form $\sigma\left(E_{i}\right)=$ $f_{i}(x) \frac{\partial}{\partial x}$, with explicit functions $f_{i}(x), i=1,2,3,4$.
