PROBLEM A BACKGROUND. If f is a smooth function on an n -dimensional manifold M then its differential $d f$ is well-defined, and given by the coordinate expression

$$
d f=\left.\Sigma_{i=1}^{n} \frac{\partial f}{\partial x^{i}}\right|_{p} d x^{i}
$$

For $p \in M$ we have $d f(p) \in T_{p}^{*} M$. s
The goal of this exercise is to show that the corresponding "Hessian of f ", whose coordinate expression at a point $p \in M$ should be

$$
\left.\Sigma_{i, j} \frac{\partial^{2} f}{\partial x^{i} x^{j}}\right|_{p} d x^{i} d x^{j}
$$

is only well-defined at critical points of f. (Here the " $\left.\right|_{p}$ " means evaluate the partial derivatives at the coordinate point corresponding to p.) This expression is to be viewed as a quadratic form (or bilinear symmetric form) on $T_{p} M$,

PROBLEM A) Let $\left(x^{1}, \ldots, x^{n}\right)$ and $\left(y^{1}, \ldots, y^{n}\right)$ be two coordinate systems centered at p. ('centered' here means $x^{i}(p)=0=y^{i}(p)$.) Suppose that $d f(p)=0$. Show that $\left.\Sigma_{i, j} \frac{\partial^{2} f}{\partial x^{i} x^{j}}\right|_{p} d x^{i} d x^{j}=\left.\Sigma_{i, j} \frac{\partial^{2} f}{\partial y^{i} y^{j}}\right|_{p} d y^{i} d y^{j}$

PROBLEM B BACKGROUND. The normal form theorem for functions (proved in class) asserts that if $d f(p) \neq 0$ then there are coordinates $\left(x^{1}, \ldots, x^{n}\right)$ centered at p such that when expressed in these coordinates we have that $f=x_{1}+C$ where C is the constant $f(p)$.

PROBLEM B (i) Suppose that $d f(p) \neq 0$. What is the Hessian of f with respect to these normal form coordinates ?

PROBLEM B (ii) Suppose that $d f(p) \neq 0$. Let $M_{i j}$ be the components of an arbitrary n by n real symmetric matrix. Show that there are coordinates $y^{1}, y^{2}, \ldots, y^{n}$ centered at p so that the Hessian of f with respect to the y^{i} at p is $\Sigma M_{i j} d y^{i} d y^{j}$. HINT: Look for a change of coordinates from the normal form coordinates x^{i} to new coordinates y^{i} which has the form $y^{i}=x^{i}+Q^{i}\left(x^{1}, \ldots, x^{n}\right)$ with the Q^{i} quadratic functions in the x^{j}.
$* * * * * * * * * * * * * * * * *$
FOOD FOR THOUGHT. An n by n real symmetric matrix defines a real quadratic form on \mathbb{R}^{n} by $Q\left(x^{1}, \ldots, x^{n}\right)=\Sigma_{i, j} M_{i j} x^{i} x^{j}$ Not all quadratic forms Q on an n dimensional real vector space are equivalent under change of basis. There are two invariants of a real quadratic form Q : its rank and its index, both being integers between 0 and n. Look up the definitions of these invariants if you do not know them. What is the rank and index of the zero form corresponding to $M_{i j}=0$? Can you list all quadratic forms, up to change of basis, on \mathbb{R}^{2} ?

