HW 2.
2.1[Hyperelliptic Riemann surface]

Consider the solution set to the equation $w^{2}=P(z)$ in \mathbb{C}^{2}. Here (z, w) are standard complex coordinates on \mathbb{C}^{2} and $P(z)$ is a polynomial in the complex variable z. By following the steps below, prove that this solution set is a smooth surface provided that the zeros of P are distinct.
2.1A. In order to obtain the proof, first formulate or even prove an implicit function theorem for functions of several complex variables.
2.1B. Note that if $\left(z_{0}, w_{0}\right)$ lies on the surface then $w_{0}=0$ iff $P\left(z_{0}\right)=0$.

Now use your IFT from 1A, dividing into cases according to whether $P\left(z_{0}\right)=0$ or not.
2.1C. Away from zeros of P. If $\left(z_{0}, w_{0}\right)$ lies on the surface and $P\left(z_{0}\right) \neq 0$ prove that there exist two smooth function $w_{ \pm}=w(z)$ defined near z_{0}, related to each other by $w_{-}(z)=-w_{+}(x)$, and such that in a neighborhood of z_{0} we have that $\left(z_{0}, w\right)$ lies on the surface if and only if $w(z)$ is one of $w_{ \pm}(z)$.
2.1D. $P\left(z_{0}\right)=0$. You can no longer parameterize as $w=w(z)$. Instead show that you can parameterize the surface by w by looking for smooth $z=z(w)$ defined near $(z, w)=\left(z_{0}, 0\right)$.
2.1C. Consider the map F which is the restriction of the projection $(z, w) \mapsto z$ to the hyperelliptic surface $z^{2}=P(z)$. Is F smooth? If 'yes' find its critical points. If 'no' describe the points where it fails to be smooth.
2.2. Consider the map $\Phi: \mathbb{R} \mathbb{P}^{n-1} \rightarrow \operatorname{Sym}(n)$ which sends a line $[v] \in \mathbb{R} \mathbb{P}^{n-1}$ to the orthogonal projection $\Phi([v])$ onto that line.
2.2 a) Show that Φ is one-to-one.
2.2 b) Express Φ in homogeneous coordinates $\Phi\left(\left[x_{1}, \ldots, x_{n}\right]\right)_{i j}=$? - a symmetric n by n matrix depending rationally on the homogeneous coordinates x_{i}. 2.2 c) Show that Φ is smooth.

