HW Assignment 1.
1.1 A. Prove that the locus $x y=0$ in the plane, is NOT a topological manifold.
B. For what values of c is the locus $x y=c$ a smooth manifold?
1.2. Set-up: Consider the space of all lines in the plane. Since a line can be given in slope-intercept form: $y=m x+b$, we can think of the slope m and intercept b as the coordinates of the line. Thus the space of lines must form a two-dimensional manifold. But the slope-intercept form misses one family of lines, the vertical lines, which have infinite slope. We can write these lines in the form $x=B$, B a constant, and as such they form part of the family of lines expressed in the form $x=M y+B$.
1.2 A. Compute the overlap map $(m, b) \mapsto(M, B)$.
1.2B. Prove that the space of all lines in the plane, with the manifold structure you just deduced, is diffeomorphic to the tangent bundle of the circle, and that this tangent bundle is in turn diffeomorphic to the cylinder $S^{1} \times \mathbb{R}$.
1.3. A holomorphic function $F: \mathbb{C} \rightarrow \mathbb{C}$ can be viewed as a function from the plane \mathbb{R}^{2} to itself, by having $z=x+i y \in \mathbb{C}$ correpsond to $(x, y) \in \mathbb{R}^{2}$. What is the relation between the complex derivative $d F / d z(z) \in \mathbb{C}$ and the real linearization, which is a linear map $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$?
1.4. Let $g l(n)$ denote the vector space of n by n real matrices, and $\operatorname{Sym}(n)$ the vector space of symmetrid n by n real matrices.
a) What is the dimension of $g l(n)$?
b) What is the dimension of $\operatorname{Sym}(n)$?
c) Compute the derivative of the map $F(A)=A A^{t}$ at the value $A=I d$.
d) Think of this F as a map $F: g l(n) \rightarrow \operatorname{Sym}(n)$ Show that $\operatorname{Id} \in \operatorname{Sym}(n)$ is a regular VALUE of F.
e) Conclude that $F^{-1}(I d)$ is a smooth manifold and compute its dimension. (Terminology: This level set $F^{-1}(I d)$ is known as the orthogonal group and denoted by $O(n)$. It is the group of linear isometries $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.)

