FINAL. DUE FRIDAY DEC 9 BY NOON.

Instructions. I urge you to TeX up your solutions. This problem concerns the Hopf fibration.

BACKGROUND and NOTATION.
Let $x_{1}, x_{2}, x_{3}, x_{4}$ be standard coordinates on \mathbb{R}^{4} so that S^{3} is defined by $\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right)\right.$: $\left.\Sigma_{i=1}^{4} x_{i}^{2}=1\right\}$ and the Euclidean metric is $d s_{E}^{2}=\Sigma_{i=1}^{4} d x_{i}^{2}$. Stereographic projection is the $\operatorname{map} F: S^{3} \backslash\{(0,0,0,1)\} \rightarrow \mathbb{R}^{3}$ given by

$$
F\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(u_{1}, u_{2}, u_{3}\right) ; u_{i}=\frac{x_{i}}{1-x_{4}}, i=1,2,3,
$$

The standard ("round") metric $d s^{2}$ on S^{3} is the restriction of $d s_{E}^{2}$ to vectors tangent to the sphere.
A) i) Show that $d s^{2}=f\left(u_{1}, u_{2}, u_{3}\right)\left(d u_{1}^{2}+d u_{2}^{2}+d u_{3}^{2}\right)$ and compute the function f (the "conformal factor").
ii) Explain why (i) proves that stereographic projection preserves angles: the angle at $x \in S^{3}$ between vectors $v, w \in T_{x} S^{3}$ equals the angle in \mathbb{R}^{3} between $d F_{x} v, d F_{x} w$.
B) BACKGROUND and NOTATION. Form $z_{1}=x_{1}+i x_{2}, z_{2}=x_{3}+i x_{4}$ and define

$$
\pi: S^{3} \rightarrow \mathbb{R}^{3}
$$

by

$$
\pi\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(w_{1}, w_{2}, w_{3}\right) ; w_{1}+i w_{2}=2 z_{1} \bar{z}_{2}, w_{3}=\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}
$$

(The map π is called the "Hopf fibration".)
i) Verify the image of π is the two-sphere $S^{2} \subset \mathbb{R}^{3}$.
ii) Verify π is a submersion when viewed as a map $S^{3} \rightarrow S^{2}$.
iii) S^{1} acts on S^{3} by $e^{i \theta}\left(z_{1}, z_{2}\right)=\left(e^{i \theta} z_{1}, e^{i \theta} z_{2}\right)$. Verify that for each $w \in S^{2}$ the fiber $\pi^{-1}(w)$ is a single orbit of this circle action.
iv). Prove that the quotient space S^{3} / S^{1} is diffeomorphic to S^{2}.
v) Let V be a smooth vector field on S^{3}. Prove that if if $\left[\frac{\partial}{\partial \theta}, V\right]=0$ then $\pi_{*} V$ makes sense as a vector field on S^{2} (some authors say " V is π-projectible") Here $\frac{\partial}{\partial \theta}$ is the infinitesimal generator of the Hopf flow of (iii).
C): BACKGROUND: A "geometric two-sphere" is an embedded two-sphere in S^{3} obtained by intersection S^{3} by an affine plane $A x_{1}+B x_{2}+C x_{3}+D x_{4}=E$.
i) Prove that if Σ is a geometric two-sphere in S^{3} then its image $F(\Sigma)$ is either a sphere or a plane in \mathbb{R}^{3}.
ii) Define a 'geometric circle' in S^{3}. Verify that the image of a geometric circle in S^{3} is either a circle or a line in \mathbb{R}^{3}.
iii) Sketch, in \mathbb{R}^{3}, the image of a few Hopf fibers, i.e. sketch the loci $F\left(\pi^{-1}(w)\right)$ for a few different choices of w.
D) BACKGROUND: A "Clifford torus" is a surface in S^{3} defined by $\left|z_{1}\right|^{2}=$ $a,\left|z_{2}\right|^{2}=b$ where a, b are positive constants with $a+b=1$.
i) Sketch the image under F of a Clifford torus.
ii) The circle action leaves the Clifford torii invariant, hence these torii are fibered by Hopf fibers. Sketch this fibration by circles of your torus from (i).

