$\mathbb{R} \mathbb{P}^{1}$ is the space of lines through the origin in \mathbb{R}^{2}. To coordinatize it, it is useful to view it as the quotient space of $\mathbb{R}^{2} \backslash\{(0,0)\}$ by the equivalence relation $(x, y) \sim(u, v) \Longleftrightarrow \operatorname{span}(x, y)=\operatorname{span}(u, v)$. We write the quotient map

$$
\mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R P}^{1} ; \quad(X, Y) \mapsto[X, Y] .
$$

Observe that $[X, Y]=[\lambda X, \lambda Y]$ for any $\lambda \in \mathbb{R}, \lambda \neq 0$. We call $[X, Y]$ the HOMOGENEOUS COORDINATES of the line ℓ.

AFFINE CHARTS.

$\mathbb{R} \mathbb{P}^{1}$ is the union of two large open sets, called "affine spaces",U_{x} and U_{y} :

$$
\mathbb{R P}^{1}=U_{x} \cup U_{y}
$$

We give three equivalent descriptions of U_{x}.

- U_{x} consists of all lines through the origin which intersect the line $Y=1$.
- U_{x} consists of all lines through the origin which can be expressed by an equation of the form

$$
X=M Y, M \in \mathbb{R}
$$

- U_{x} consists of all lines EXCEPT the x-axis $Y=0$.

The intersection point of a line $\ell \in U_{x}$ with the line $Y=1$ is $(M, 1)=(x, 1)$. We call x the "affine coordinate" of ℓ in the chart U_{x}. The corresponding coordinate chart is then

$$
\phi_{x}: U_{x} \rightarrow \mathbb{R} ;[X, Y] \mapsto x=X / Y=M
$$

with inverse map

$$
\phi_{x}^{-1}: \mathbb{R} \rightarrow U_{x} ; \phi_{x}^{-1}(x)=[x, 1] .
$$

As $x \rightarrow \infty$ the line $[x, 1]$ tends to the line $\ell_{\infty}=[1,0]$, which is the X -axis. Thus, we can say $\mathbb{R P}^{1}=\mathbb{R} \cup\{\infty\}$.

Chart covering infinity To cover the rest of \mathbb{R}^{1}, which is to say to cover the missing ℓ_{∞}, we switch the roles of X and Y . Thus let

$$
U_{y}=\{[X, Y] ; X \neq 0\}=\mathbb{R P}^{1} \backslash\left\{\ell_{0}\right\}=\text { lines intersecting the line } X=1
$$

Here ℓ_{0} is the Y-axis, which is the locus $X=0$. Any line $\ell \in U_{y}$ can be expressed in standard slope form as

$$
Y=m X
$$

and, since $Y \neq 0$ somewhere on ℓ we have

$$
\ell=[X, Y]=[1, Y / X]=[1, y]
$$

allowing us to define the affine coordinate y according to

$$
\phi_{y}: U_{y} \rightarrow \mathbb{R} ;[X, Y] \mapsto y=Y / X
$$

with inverse map

$$
\phi_{y}^{-1}: \mathbb{R} \rightarrow U_{x} ; \phi_{y}^{-1}(y)=[1, y]
$$

Note: the slope m is this affine coordinate:

$$
m=Y / X=y
$$

Coordinate overlap or Transition function. $U_{x} \cap U_{y}=$ lines through $(0,0)$ except the Y -axis and the X -axis. Alternatively:

$$
U_{x} \cap U_{y}=\mathbb{R P}^{1} \backslash\left\{\ell_{\infty}, \ell_{0}\right\}
$$

The coordinate overlap map $\phi_{y} \circ \phi_{x}^{-1}$ has domain $\mathbb{R} \backslash\{0\}$ and is given by

$$
x \mapsto[x, 1]=[1,1 / x]=[1, y] \mapsto y=1 / x
$$

SEE FIGURE. Alternatively, any line $\ell \in U_{x} \cup U_{y}$ is expressed in homogeneious coordinates as an $[X, Y]$ with $X \neq 0$ and $Y \neq 0$ so we can write ℓ as $[X / Y, 1]$ and also as $[1, Y / X]$ Setting $x=X / Y, y=Y / X$ we see that the overlap is $x \mapsto 1 / x$.

OTHER FIELDS. All these considerations work with any field \mathbb{K} replacing \mathbb{R}. For our purposes, \mathbb{C} is a good field. We have $\mathbb{C P}^{1}=$ complex lines through the origin in \mathbb{C}^{2}. Also $\mathbb{C P}^{1}=\mathbb{C} \cup\{\infty\}=S^{2}=$ Riemann sphere.

