MATH 208-HW \# 7

Nathan Marianovsky

November 1, 2017

Problem 1. Let $\alpha=-y \mathrm{~d} x+\mathrm{d} z$, a one-form on \mathbb{R}^{3}. Find non-vanishing vector fields V on \mathbb{R}^{3} s.t. $\mathcal{L}_{V} \alpha=0$. Find other vector fields s.t. $\mathcal{L}_{V} \alpha=f \alpha, f \neq 0$ a function.

Solution 1. We take $V=V^{1} \partial_{x}+V^{2} \partial_{y}+V^{3} \partial_{z}$ to be an arbitrary vector field. The Lie derivative can be computed via:

$$
\mathcal{L}_{V} \alpha=\left(V^{j} \frac{\partial \alpha_{i}}{\partial x^{j}}+\alpha_{j} \frac{\partial V^{j}}{\partial x^{i}}\right) \mathrm{d} x^{i}
$$

With $\alpha_{2}=0$ and the derivative of α_{3} being zero throws out a lot of terms providing:

$$
\mathcal{L}_{V} \alpha=\left(-y \partial_{x} V^{1}-V^{2}+\partial_{x} V^{3}\right) \mathrm{d} x+\left(-y \partial_{y} V^{1}+\partial_{y} V^{3}\right) \mathrm{d} y+\left(-y \partial_{z} V^{1}+\partial_{z} V^{3}\right) \mathrm{d} z
$$

- For $\mathcal{L}_{V} \alpha=0$ we want the vector field to satisfy:

$$
\begin{aligned}
& \partial_{x}\left(-y V^{1}+V^{3}\right)=V^{2} \\
& \partial_{y}\left(-y V^{1}+V^{3}\right)=-V^{1} \\
& \partial_{z}\left(-y V^{1}+V^{3}\right)=0
\end{aligned}
$$

- For $\mathcal{L}_{V} \alpha=f \alpha$ we want the vector field to satisfy:

$$
\begin{aligned}
& \partial_{x}\left(-y V^{1}+V^{3}\right)=V^{2}-y f \\
& \partial_{y}\left(-y V^{1}+V^{3}\right)=-V^{1} \\
& \partial_{z}\left(-y V^{1}+V^{3}\right)=f
\end{aligned}
$$

Problem 2. Repeat the previous problem with the one-form $\alpha=\mathrm{d} z$.

Solution 2. We take $V=V^{1} \partial_{x}+V^{2} \partial_{y}+V^{3} \partial_{z}$ to be an arbitrary vector field. The Lie derivative can be computed via:

$$
\mathcal{L}_{V} \alpha=\left(V^{j} \frac{\partial \alpha_{i}}{\partial x^{j}}+\alpha_{j} \frac{\partial V^{j}}{\partial x^{i}}\right) \mathrm{d} x^{i}
$$

With $\alpha_{1}=\alpha_{2}=0$ and the derivative of α_{3} being zero throws out a lot of terms providing:

$$
\mathcal{L}_{V} \alpha=\partial_{x} V^{3} \mathrm{~d} x+\partial_{y} V^{3} \mathrm{~d} y+\partial_{z} V^{3} \mathrm{~d} z
$$

- For $\mathcal{L}_{V} \alpha=0$ we want the vector field to satisfy $\partial_{x} V^{3}=\partial_{y} V^{3}=\partial_{z} V^{3}=0$. It easily follows that $V^{3}=c$ for some $c \in \mathbb{R} \backslash\{0\}$. Therefore, any vector field of the form $V=V^{1} \partial_{x}+V^{2} \partial_{y}+c \partial_{z}$ ensures $\mathcal{L}_{V} \alpha=0$.
- For $\mathcal{L}_{V} \alpha=f \alpha$ we want the vector field to satisfy $\partial_{x} V^{3}=\partial_{y} V^{3}=0$ and $\partial_{z} V^{3}=f$. It easily follows that $V^{3}=g(z)$ where $g^{\prime}(z)=f$. Therefore, any vector field of the form $V=V^{1} \partial_{x}+V^{2} \partial_{y}+g(z) \partial_{z}$ ensures $\mathcal{L}_{V} \alpha=f \alpha$.

