MATH 208 - HW # 7

Nathan Marianovsky November 1, 2017

Problem 1. Let $\alpha = -y dx + dz$, a one-form on \mathbb{R}^3 . Find non-vanishing vector fields V on \mathbb{R}^3 s.t. $\mathcal{L}_V \alpha = 0$. Find other vector fields s.t. $\mathcal{L}_V \alpha = f \alpha$, $f \neq 0$ a function.

Solution 1. We take $V = V^1 \partial_x + V^2 \partial_y + V^3 \partial_z$ to be an arbitrary vector field. The Lie derivative can be computed via:

$$\mathcal{L}_{V}\alpha = \left(V^{j}\frac{\partial\alpha_{i}}{\partial x^{j}} + \alpha_{j}\frac{\partial V^{j}}{\partial x^{i}}\right)dx^{i}$$

With $\alpha_2 = 0$ and the derivative of α_3 being zero throws out a lot of terms providing:

$$\mathcal{L}_{V}\alpha = \left(-y\partial_{x}V^{1} - V^{2} + \partial_{x}V^{3}\right)dx + \left(-y\partial_{y}V^{1} + \partial_{y}V^{3}\right)dy + \left(-y\partial_{z}V^{1} + \partial_{z}V^{3}\right)dz$$

• For $\mathcal{L}_V \alpha = 0$ we want the vector field to satisfy:

$$\partial_x \left(-yV^1 + V^3 \right) = V^2$$
$$\partial_y \left(-yV^1 + V^3 \right) = -V^1$$
$$\partial_z \left(-yV^1 + V^3 \right) = 0$$

• For $\mathcal{L}_V \alpha = f \alpha$ we want the vector field to satisfy:

$$\partial_x \left(-yV^1 + V^3 \right) = V^2 - yf$$

$$\partial_y \left(-yV^1 + V^3 \right) = -V^1$$

$$\partial_z \left(-yV^1 + V^3 \right) = f$$

Problem 2. Repeat the previous problem with the one-form $\alpha = dz$.

Solution 2. We take $V = V^1 \partial_x + V^2 \partial_y + V^3 \partial_z$ to be an arbitrary vector field. The Lie derivative can be computed via:

$$\mathcal{L}_{V}\alpha = \left(V^{j}\frac{\partial\alpha_{i}}{\partial x^{j}} + \alpha_{j}\frac{\partial V^{j}}{\partial x^{i}}\right)dx^{i}$$

With $\alpha_1 = \alpha_2 = 0$ and the derivative of α_3 being zero throws out a lot of terms providing:

$$\mathcal{L}_V \alpha = \partial_x V^3 dx + \partial_y V^3 dy + \partial_z V^3 dz$$

- For $\mathcal{L}_V \alpha = 0$ we want the vector field to satisfy $\partial_x V^3 = \partial_y V^3 = \partial_z V^3 = 0$. It easily follows that $V^3 = c$ for some $c \in \mathbb{R} \setminus \{0\}$. Therefore, any vector field of the form $V = V^1 \partial_x + V^2 \partial_y + c \partial_z$ ensures $\mathcal{L}_V \alpha = 0$.
- For $\mathcal{L}_V \alpha = f \alpha$ we want the vector field to satisfy $\partial_x V^3 = \partial_y V^3 = 0$ and $\partial_z V^3 = f$. It easily follows that $V^3 = g(z)$ where g'(z) = f. Therefore, any vector field of the form $V = V^1 \partial_x + V^2 \partial_y + g(z) \partial_z$ ensures $\mathcal{L}_V \alpha = f \alpha$.