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Problem 1. Look at all lines in R2 and note that it forms a manifold. What is its dimension? Provide explicit charts.

Solution 1.
• We note that the dimension of RP1 came out to be one since it only required information about the slope to identify

a unique line in the space. Building off of this we can say that our manifold, M , is characterized as M ∼= RP1×R
because it needs the information about the slope from RP1 and another value for the intercept of the line. Therefore
the dimension of M must be two.

• For RP1 it took two charts to cover the space since one line would always be missed by any chart. Using this as
motivation we can take the two lines x = 0 and y = 0 and notice that it takes two charts to cover the space.

– To obtain all non-vertical lines we define the chart f : U ⊆M → R2 given by:

f : (m, c)→ {(x, y) ∈ R2 | y = mx+ b}

– To obtain all non-horizontal lines we define the chart g : V ⊆M → R2 given by:

g : (m, c)→ {(x, y) ∈ R2 | x = my + b}

Intuition tells us that the overlap map will consist of all lines having non-zero/non-infinite slope. To see this explicitly
we have:

g ◦ f−1 : R2 → R2 given by {(x, y) ∈ R2 | y = mx+ b} →

{
(x, y) ∈ R2

∣∣∣∣∣ x =
1

m
y − b

m
and m 6= 0

}
• It is also interesting to note that M ∼= S1 × R. The reason behind this is that RP1 ∼= S1. To show this explicitly

recall the stereographic atlas {(UN , φN ), (US , φS)} for UN = S1 \ {(0, 1)} and US = S1 \ {(0,−1)} where the
maps are given by:

φN : (x, y)→ x

1− y
and φS : (x, y)→ x

1 + y

For RP1 we use the atlas {(U1, φ1), (U2, φ2)} where U1 = U2 = R \ {0}. The maps are given by:

φ1 : {(x, y) ∈ R2 | y = mx} → y

x
and φ2 : {(x, y) ∈ R2 | x = my} → x

y

Now we define the mapping:

ψ : RP1 → S1 given by ψ(l) =

{
(φ−1
N ◦ φ1)(l) if l ∈ U1

(φ−1
S ◦ φ2)(l) if l ∈ U2

which is a diffeomorphism between RP1 and S1.

Problem 2. Prove that multiplication (A,B)→ AB is a smooth map SO(3,R)× SO(3,R)→ SO(3,R).

Solution 2.
• First we notice that SO(3,R)×SO(3,R) ↪→ gl(3,R)× gl(3,R) via the identity mapping. Furthermore, the identity

mapping is continuous and injective telling us that SO(3,R)× SO(3,R) is an embedded manifold in
gl(3,R)× gl(3,R).

• Take A,B ∈ SO(3,R) and notice det(AB) = det(A) det(B) = 1 and (AB)−1 = B−1A−1 = BTAT = (AB)T .
This tells us that Im(f) ⊆ SO(3,R) where f represents the matrix multiplication. To show inclusion in the other
direction we consider the surjectivity of the map. For any R ∈ SO(3,R) we can always find the pair
(R, I) ∈ SO(3,R)× SO(3,R) s.t. RI = R where I is the identity matrix. Thus, Im(f) = SO(3,R).



• Now we show that f : gl(3,R) × gl(3,R) → gl(3,R) is a smooth map from which it will follow that it is also
smooth on the multiplication of rotation matrices, an embedded manifold. Explicitly we have:

AB =

a1 a2 a3
a4 a5 a6
a7 a8 a9

b1 b4 b7
b2 b5 b8
b3 b6 b9

 =

← −→v1 →
← −→v2 →
← −→v3 →

 ↑ ↑ ↑
−→w1

−→w2
−→w3

↓ ↓ ↓

 =

〈v1, w1〉 〈v1, w2〉 〈v1, w3〉
〈v2, w1〉 〈v2, w2〉 〈v2, w3〉
〈v3, w1〉 〈v3, w2〉 〈v3, w3〉


So using the charts (W1, ψ1) and (W2, ψ2) where:

ψ1 :W1 → R18 given by ψ1(A,B) = (a1, . . . , a9, b1, . . . , b9)

ψ2 :W2 → R9 given by ψ2(C) = (c1, . . . , c9)

gives us a map from ζ = ψ2 ◦ f ◦ ψ−1
1 : R18 → R9:

ζ(a1, . . . , a9, b1, . . . , b9) =



〈v1, w1〉
〈v1, w2〉
〈v1, w3〉
〈v2, w1〉
〈v2, w2〉
〈v2, w3〉
〈v3, w1〉
〈v3, w2〉
〈v3, w3〉


Since each component of ζ is smooth, then so is ζ.

Problem 3. Prove that inversion A→ A−1 is a smooth map SO(3,R)→ SO(3,R).

Solution 3.
• First we notice that SO(3,R) ↪→ GL(3,R) via the identity mapping. Furthermore, the identity mapping is continuous

and injective telling us that SO(3,R) is an embedded manifold in GL(3,R).
• Take A ∈ SO(3,R) and notice det(A−1) = 1

det(A) = 1 and (A−1)T = (AT )−1 = (A−1)−1. This tells us that
Im(g) ⊆ SO(3,R) where g represents the matrix inversion. To show inclusion in the other direction we consider
the surjectivity of the map. For any R ∈ SO(3,R) we can always find a unique inverse R−1 ∈ GL(3,R) s.t.
RR−1 = R−1R = I . Furthermore, if R is rotation, then so is the inverse. Thus, Im(f) = SO(3,R).

• Now we show that g : GL(3,R)→ GL(3,R) is a smooth map from which it will follow that it is also smooth on
rotation matrices, an embedded manifold. Explicitly we have:

A−1 =
1

det(A)

 M11 −M21 M31

−M12 M22 −M32

M13 −M23 M33


where Mij represents the determinant of the 2× 2 matrix that results from deleting row i and column j of A. This
tells us that matrix inversion can be thought of as a map from R9 to R9 that sends (a1, . . . , a9) to rational functions
of those inputs. Since the determinant is non-zero, we can say that each rational function is smooth implying that
g is a smooth map.

Problem 4. Let:

E3 =

0 −1 0
1 0 0
0 0 0


Prove that X(g) = gE3 defines a smooth vector field on SO(3,R).



Solution 4. For an arbitrary g ∈ SO(3,R) we can see the action of the derivation directly:

X(g) = gE3 =

g1 g2 g3
g4 g5 g6
g7 g8 g9

0 −1 0
1 0 0
0 0 0

 =

g2 −g1 0
g5 −g4 0
g8 −g7 0


Therefore, the corresponding vector field has to take the form V (x, y) = y ∂

∂x − x
∂
∂y . The correspondence comes from

observing the behavior of the column vectors. Furthermore, since each component function is smooth, so is the vector
field.

Problem 5. Prove that the map π : SO(3,R)→ S2 given by π(g) = ge3 is a submersion.

Solution 5. Notice what this map provides explicitly:

π(g) =

g1 g2 g3
g4 g5 g6
g7 g8 g9

0
0
1

 =

g3g6
g9


Using the fact that the column vectors of any rotation matrix make up an orthonormal set implies g23+g

2
6+g

2
9 = 1. Thus,

π(g) ∈ S2. To show that this map is a submersion means we have to show the Jacobian is surjective. To accomplish
such a task we need to consider the lifting:

GL(3,R) π̃−→ (R3)×

κ
x xα
SO(3,R) π−→ S2

where κ(R) = R, π̃(A) = Ae3, and α(−→p ) = −→p . Since SO(3,R) ↪→ GL(3,R) and S2 ↪→ (R3)× via the identity maps,
they are embedded manifolds. Furthermore, we can see that:

J(π̃) =

0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1


which has full rank showing that π̃ is a submersion of GL(3,R) into (R3)×. Therefore, π is also a submersion since it
inherits the behavior from π̃.

Problem 6. As one of the HWs the coordinate transition map x→ 1
x came up for switching from one chart to another

in the standard affine charts of RP1. Instead of viewing this map passively as a change of coordinates, we can look
at it actively, as a transformation of F : RP1 → RP1, defined within the single affine chart Y 6= 0. Find the linear
transformation L : R2 → R2 which induces the map f(x) = 1

x in this standard affine chart.

Solution 6.
• From the viewpoint of X = 1 we have to satisfy the mappings (1,m) →

(
1
m , 1

)
and (1, 0) → (0, 1). The linear

transformation must therefore take the form:
L =

(
0 1

m2

1 0

)
which misses the infinite point (X = 0).

• From the viewpoint of Y = 1 we have to satisfy the mappings
(

1
m , 1

)
→ (1,m) and (0, 1) → (1, 0). The linear

transformation must therefore take the form:
L =

(
0 1
m2 0

)
which misses the infinite point (Y = 0).


