MATH 208 - HW # 6

Nathan Marianovsky October 23, 2017

Problem 1. Look at all lines in \mathbb{R}^2 and note that it forms a manifold. What is its dimension? Provide explicit charts.

Solution 1.

- We note that the dimension of ℝP¹ came out to be one since it only required information about the slope to identify a unique line in the space. Building off of this we can say that our manifold, M, is characterized as M ≅ ℝP¹ × ℝ because it needs the information about the slope from ℝP¹ and another value for the intercept of the line. Therefore the dimension of M must be two.
- For \mathbb{RP}^1 it took two charts to cover the space since one line would always be missed by any chart. Using this as motivation we can take the two lines x = 0 and y = 0 and notice that it takes two charts to cover the space.
 - To obtain all non-vertical lines we define the chart $f: U \subseteq M \to \mathbb{R}^2$ given by:

$$f: (m,c) \to \{(x,y) \in \mathbb{R}^2 \mid y = mx + b\}$$

- To obtain all non-horizontal lines we define the chart $g: V \subseteq M \to \mathbb{R}^2$ given by:

$$g: (m,c) \to \{(x,y) \in \mathbb{R}^2 \mid x = my + b\}$$

Intuition tells us that the overlap map will consist of all lines having non-zero/non-infinite slope. To see this explicitly we have:

$$g \circ f^{-1} : \mathbb{R}^2 \to \mathbb{R}^2 \quad \text{given by} \quad \{(x, y) \in \mathbb{R}^2 \mid y = mx + b\} \to \left\{ (x, y) \in \mathbb{R}^2 \mid x = \frac{1}{m}y - \frac{b}{m} \text{ and } m \neq 0 \right\}$$

• It is also interesting to note that $M \cong S^1 \times \mathbb{R}$. The reason behind this is that $\mathbb{RP}^1 \cong S^1$. To show this explicitly recall the stereographic atlas $\{(U_N, \phi_N), (U_S, \phi_S)\}$ for $U_N = S^1 \setminus \{(0, 1)\}$ and $U_S = S^1 \setminus \{(0, -1)\}$ where the maps are given by:

$$\phi_N: (x,y) o rac{x}{1-y} \quad ext{and} \quad \phi_S: (x,y) o rac{x}{1+y}$$

For \mathbb{RP}^1 we use the atlas $\{(U_1, \phi_1), (U_2, \phi_2)\}$ where $U_1 = U_2 = \mathbb{R} \setminus \{0\}$. The maps are given by:

$$\phi_1 : \{(x,y) \in \mathbb{R}^2 \mid y = mx\} \to \frac{y}{x} \text{ and } \phi_2 : \{(x,y) \in \mathbb{R}^2 \mid x = my\} \to \frac{x}{y}$$

Now we define the mapping:

$$\psi: \mathbb{RP}^1 \to S^1 \text{ given by } \psi(l) = \begin{cases} (\phi_N^{-1} \circ \phi_1)(l) & \text{if } l \in U_1 \\ (\phi_S^{-1} \circ \phi_2)(l) & \text{if } l \in U_2 \end{cases}$$

which is a diffeomorphism between \mathbb{RP}^1 and S^1 .

Problem 2. Prove that multiplication $(A, B) \to AB$ is a smooth map $SO(3, \mathbb{R}) \times SO(3, \mathbb{R}) \to SO(3, \mathbb{R})$.

Solution 2.

- First we notice that SO(3, ℝ) × SO(3, ℝ) → gl(3, ℝ) × gl(3, ℝ) via the identity mapping. Furthermore, the identity mapping is continuous and injective telling us that SO(3, ℝ) × SO(3, ℝ) is an embedded manifold in gl(3, ℝ) × gl(3, ℝ).
- Take A, B ∈ SO(3, ℝ) and notice det(AB) = det(A) det(B) = 1 and (AB)⁻¹ = B⁻¹A⁻¹ = B^TA^T = (AB)^T. This tells us that ℑm(f) ⊆ SO(3, ℝ) where f represents the matrix multiplication. To show inclusion in the other direction we consider the surjectivity of the map. For any R ∈ SO(3, ℝ) we can always find the pair (R, I) ∈ SO(3, ℝ) × SO(3, ℝ) s.t. RI = R where I is the identity matrix. Thus, ℑm(f) = SO(3, ℝ).

• Now we show that $f: gl(3,\mathbb{R}) \times gl(3,\mathbb{R}) \to gl(3,\mathbb{R})$ is a smooth map from which it will follow that it is also smooth on the multiplication of rotation matrices, an embedded manifold. Explicitly we have:

$$AB = \begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{pmatrix} \begin{pmatrix} b_1 & b_4 & b_7 \\ b_2 & b_5 & b_8 \\ b_3 & b_6 & b_9 \end{pmatrix} = \begin{pmatrix} \leftarrow & \overrightarrow{v_1} \to \\ \leftarrow & \overrightarrow{v_2} \to \\ \leftarrow & \overrightarrow{v_3} \to \end{pmatrix} \begin{pmatrix} \uparrow & \uparrow & \uparrow \\ \overrightarrow{w_1} & \overrightarrow{w_2} & \overrightarrow{w_3} \\ \downarrow & \downarrow & \downarrow \end{pmatrix} = \begin{pmatrix} \langle v_1, w_1 \rangle & \langle v_1, w_2 \rangle & \langle v_1, w_3 \rangle \\ \langle v_2, w_1 \rangle & \langle v_2, w_2 \rangle & \langle v_2, w_3 \rangle \\ \langle v_3, w_1 \rangle & \langle v_3, w_2 \rangle & \langle v_3, w_3 \rangle \end{pmatrix}$$

So using the charts (W_1, ψ_1) and (W_2, ψ_2) where:

$$\psi_1: W_1 \to \mathbb{R}^{18}$$
 given by $\psi_1(A, B) = (a_1, \dots, a_9, b_1, \dots, b_9)$
 $\psi_2: W_2 \to \mathbb{R}^9$ given by $\psi_2(C) = (c_1, \dots, c_9)$

gives us a map from $\zeta = \psi_2 \circ f \circ \psi_1^{-1} : \mathbb{R}^{18} \to \mathbb{R}^9$:

$$\zeta(a_1,\ldots,a_9,b_1,\ldots,b_9) = \begin{pmatrix} \langle v_1,w_1 \rangle \\ \langle v_1,w_2 \rangle \\ \langle v_1,w_3 \rangle \\ \langle v_2,w_1 \rangle \\ \langle v_2,w_2 \rangle \\ \langle v_2,w_3 \rangle \\ \langle v_3,w_1 \rangle \\ \langle v_3,w_2 \rangle \\ \langle v_3,w_3 \rangle \end{pmatrix}$$

Since each component of ζ is smooth, then so is ζ .

Problem 3. Prove that inversion $A \to A^{-1}$ is a smooth map $SO(3, \mathbb{R}) \to SO(3, \mathbb{R})$.

Solution 3.

- First we notice that $SO(3,\mathbb{R}) \hookrightarrow GL(3,\mathbb{R})$ via the identity mapping. Furthermore, the identity mapping is continuous
- and injective telling us that $SO(3, \mathbb{R})$ is an embedded manifold in $GL(3, \mathbb{R})$. Take $A \in SO(3, \mathbb{R})$ and notice $\det(A^{-1}) = \frac{1}{\det(A)} = 1$ and $(A^{-1})^T = (A^T)^{-1} = (A^{-1})^{-1}$. This tells us that $\Im(g) \subseteq SO(3, \mathbb{R})$ where g represents the matrix inversion. To show inclusion in the other direction we consider the surjectivity of the map. For any $R \in SO(3,\mathbb{R})$ we can always find a unique inverse $R^{-1} \in GL(3,\mathbb{R})$ s.t. $RR^{-1} = R^{-1}R = I$. Furthermore, if R is rotation, then so is the inverse. Thus, $\mathfrak{Im}(f) = SO(3, \mathbb{R})$.
- Now we show that $g: GL(3,\mathbb{R}) \to GL(3,\mathbb{R})$ is a smooth map from which it will follow that it is also smooth on rotation matrices, an embedded manifold. Explicitly we have:

$$A^{-1} = \frac{1}{\det(A)} \begin{pmatrix} M_{11} & -M_{21} & M_{31} \\ -M_{12} & M_{22} & -M_{32} \\ M_{13} & -M_{23} & M_{33} \end{pmatrix}$$

where M_{ij} represents the determinant of the 2 × 2 matrix that results from deleting row *i* and column *j* of *A*. This tells us that matrix inversion can be thought of as a map from \mathbb{R}^9 to \mathbb{R}^9 that sends (a_1, \ldots, a_9) to rational functions of those inputs. Since the determinant is non-zero, we can say that each rational function is smooth implying that q is a smooth map.

Problem 4. Let:

$$E_3 = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Prove that $X(g) = gE_3$ defines a smooth vector field on $SO(3, \mathbb{R})$.

Solution 4. For an arbitrary $g \in SO(3, \mathbb{R})$ we can see the action of the derivation directly:

$$X(g) = gE_3 = \begin{pmatrix} g_1 & g_2 & g_3 \\ g_4 & g_5 & g_6 \\ g_7 & g_8 & g_9 \end{pmatrix} \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} g_2 & -g_1 & 0 \\ g_5 & -g_4 & 0 \\ g_8 & -g_7 & 0 \end{pmatrix}$$

Therefore, the corresponding vector field has to take the form $V(x, y) = y \frac{\partial}{\partial x} - x \frac{\partial}{\partial y}$. The correspondence comes from observing the behavior of the column vectors. Furthermore, since each component function is smooth, so is the vector field.

Problem 5. Prove that the map $\pi : SO(3, \mathbb{R}) \to S^2$ given by $\pi(g) = ge_3$ is a submersion.

Solution 5. Notice what this map provides explicitly:

$$\pi(g) = \begin{pmatrix} g_1 & g_2 & g_3 \\ g_4 & g_5 & g_6 \\ g_7 & g_8 & g_9 \end{pmatrix} \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} g_3 \\ g_6 \\ g_9 \end{pmatrix}$$

Using the fact that the column vectors of any rotation matrix make up an orthonormal set implies $g_3^2 + g_6^2 + g_9^2 = 1$. Thus, $\pi(g) \in S^2$. To show that this map is a submersion means we have to show the Jacobian is surjective. To accomplish such a task we need to consider the lifting:

$$GL(3,\mathbb{R}) \xrightarrow{\pi} (\mathbb{R}^3)^{\times}$$

 $\kappa \uparrow \qquad \uparrow \alpha$
 $SO(3,\mathbb{R}) \xrightarrow{\pi} S^2$

where $\kappa(R) = R$, $\tilde{\pi}(A) = Ae_3$, and $\alpha(\overrightarrow{p}) = \overrightarrow{p}$. Since $SO(3, \mathbb{R}) \hookrightarrow GL(3, \mathbb{R})$ and $S^2 \hookrightarrow (\mathbb{R}^3)^{\times}$ via the identity maps, they are embedded manifolds. Furthermore, we can see that:

$$J(\tilde{\pi}) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

which has full rank showing that $\tilde{\pi}$ is a submersion of $GL(3,\mathbb{R})$ into $(\mathbb{R}^3)^{\times}$. Therefore, π is also a submersion since it inherits the behavior from $\tilde{\pi}$.

Problem 6. As one of the HWs the coordinate transition map $x \to \frac{1}{x}$ came up for switching from one chart to another in the standard affine charts of \mathbb{RP}^1 . Instead of viewing this map passively as a change of coordinates, we can look at it actively, as a transformation of $F : \mathbb{RP}^1 \to \mathbb{RP}^1$, defined within the single affine chart $Y \neq 0$. Find the linear transformation $L : \mathbb{R}^2 \to \mathbb{R}^2$ which induces the map $f(x) = \frac{1}{x}$ in this standard affine chart.

Solution 6.

• From the viewpoint of X = 1 we have to satisfy the mappings $(1, m) \rightarrow \left(\frac{1}{m}, 1\right)$ and $(1, 0) \rightarrow (0, 1)$. The linear transformation must therefore take the form:

$$L = \begin{pmatrix} 0 & \frac{1}{m^2} \\ 1 & 0 \end{pmatrix}$$

which misses the infinite point (X = 0).

• From the viewpoint of Y = 1 we have to satisfy the mappings $\left(\frac{1}{m}, 1\right) \to (1, m)$ and $(0, 1) \to (1, 0)$. The linear transformation must therefore take the form:

$$L = \begin{pmatrix} 0 & 1\\ m^2 & 0 \end{pmatrix}$$

which misses the infinite point (Y = 0).