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Problem 1. Look at all lines in R? and note that it forms a manifold. What is its dimension? Provide explicit charts.

Solution 1.

« We note that the dimension of RP* came out to be one since it only required information about the slope to identify
a unique line in the space. Building off of this we can say that our manifold, M, is characterized as M = RP! x R
because it needs the information about the slope from RP! and another value for the intercept of the line. Therefore
the dimension of M must be two.

« For RP! it took two charts to cover the space since one line would always be missed by any chart. Using this as
motivation we can take the two lines x = 0 and y = 0 and notice that it takes two charts to cover the space.

— To obtain all non-vertical lines we define the chart f : U C M — R? given by:
f:(m,c) = {(z,y) € R? | y = max + b}

— To obtain all non-horizontal lines we define the chart g : V' C M — R? given by:
g:(m,c) = {(z,y) €R? |z = my + b}

Intuition tells us that the overlap map will consist of all lines having non-zero/non-infinite slope. To see this explicitly
we have:

gof1:R?* - R? givenby {(z,y) €R?|y=mz+b} — {(m,y) c R?
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o It is also interesting to note that M = S! x R. The reason behind this is that RP! = S'. To show this explicitly
recall the stereographic atlas {(Uy, ¢n), (Us, ¢s)} for Uy = S\ {(0,1)} and Us = S*\ {(0,—1)} where the
maps are given by:

x x
¢N—(1‘,?J)—>q and ¢s : (z,y) — 1ty

For RP! we use the atlas {(Uy, ¢1), (U, ¢2)} where Uy = Uy = R\ {0}. The maps are given by:
z
¢1:{(m,y)€R2|y:mx}—>% and ¢2:{(x,y)6R2|x:my}—>§

Now we define the mapping:

(o o)1) if 1€l
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¥ RP — S given by 1/1(1)—{(%10@)(1) if [eU;

which is a diffeomorphism between RP! and S'.

Problem 2. Prove that multiplication (A, B) — AB is a smooth map SO(3,R) x SO(3,R) — SO(3,R).

Solution 2.

« First we notice that SO(3,R) x SO(3,R) < gl(3,R) x gl(3,R) via the identity mapping. Furthermore, the identity
mapping is continuous and injective telling us that SO(3,R) x SO(3,R) is an embedded manifold in
gl(3,R) x gl(3,R).

e Take A, B € SO(3,R) and notice det(AB) = det(A)det(B) = 1 and (AB)™! = B~'A~! = BTAT = (AB)".
This tells us that Jm(f) C SO(3,R) where f represents the matrix multiplication. To show inclusion in the other
direction we consider the surjectivity of the map. For any R € SO(3,R) we can always find the pair
(R,I) € SO(3,R) x SO(3,R) s.t. RI = R where [ is the identity matrix. Thus, Jm(f) = SO(3,R).



o Now we show that f : gl(3,R) x gl(3,R) — gl(3,R) is a smooth map from which it will follow that it is also
smooth on the multiplication of rotation matrices, an embedded manifold. Explicitly we have:

ai az az\ (b1 by by — 9 - T 1t 1 (vi,wr) (vi,w2) (vi,ws)
AB= a4 a5 as| b2 bs bs| =« w5 —||w ws w| = (vw) (vo,ws) (vo,ws)
ar ag ag) \bs bs bg — v - 11! (v, wr) (v3,w2) (v3,w3)

So using the charts (W3, 1) and (Wa,12) where:
¢1 : W1 — RIB given by ¢1(A, B) = (ab ...,0a9, bl, ... ,bg)
o : Wy — R given by 19(C) = (c1, ..., o)

gives us a map from ¢ = ¢pp 0 for; ' : R® — RY:
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C(al,...,ag,bl,...,bg): <v2,w2>
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( )
( )
( )

Since each component of ( is smooth, then so is (.

Problem 3. Prove that inversion A — A~! is a smooth map SO(3,R) — SO(3,R).

Solution 3.

« First we notice that SO(3,R) < GL(3,R) via the identity mapping. Furthermore, the identity mapping is continuous
and injective telling us that SO(3,R) is an embedded manifold in GL(3,R).

o Take A € SO(3,R) and notice det(A™1) = #(A) =1and (A™H)T = (AT)=! = (A~1)~L. This tells us that
Jm(g) € SO(3,R) where g represents the matrix inversion. To show inclusion in the other direction we consider
the surjectivity of the map. For any R € SO(3,R) we can always find a unique inverse R~! € GL(3,R) s.t.
RR™! = R™'R = I. Furthermore, if R is rotation, then so is the inverse. Thus, Jm(f) = SO(3,R).

o Now we show that g : GL(3,R) — GL(3,R) is a smooth map from which it will follow that it is also smooth on

rotation matrices, an embedded manifold. Explicitly we have:
) 1 My —Ma  Ms
= \-M M. —M.
det(A) 12 22 32
Myz  —Mas  Mss
where M;; represents the determinant of the 2 x 2 matrix that results from deleting row 4 and column j of A. This
tells us that matrix inversion can be thought of as a map from R? to R that sends (az, ..., ag) to rational functions

of those inputs. Since the determinant is non-zero, we can say that each rational function is smooth implying that
g is a smooth map.

Problem 4. Let:

Es =

NN o~ o
o O
o O O

Prove that X (g) = gF3 defines a smooth vector field on SO(3,R).



Solution 4. For an arbitrary g € SO(3,R) we can see the action of the derivation directly:

g1 92 93 0 -1 0 92 —g1 O
X(9)=9gF3=|0gs 95 96| |1 0 0] =195 —gs O
g7 98 99 0 0 O gs —gr O

Therefore, the corresponding vector field has to take the form V(x,y) = ya% — xa%. The correspondence comes from
observing the behavior of the column vectors. Furthermore, since each component function is smooth, so is the vector
field.

Problem 5. Prove that the map 7 : SO(3,R) — S? given by 7(g) = ges is a submersion.

Solution 5. Notice what this map provides explicitly:

g1 92 93 0 g3
m(g)=194 95 96| 0] =106
gr 93 99 1 )

Using the fact that the column vectors of any rotation matrix make up an orthonormal set implies gg + g% + gg = 1. Thus,
m(g) € S2. To show that this map is a submersion means we have to show the Jacobian is surjective. To accomplish
such a task we need to consider the lifting:

GL(3,R) 5 (R3)*

k] I

SO(3,R) 5 §2

where k(R) = R, 7(A) = Aes, and a(7') = P. Since SO(3,R) — GL(3,R) and S? < (R*)* via the identity maps,
they are embedded manifolds. Furthermore, we can see that:

000 0O0O0OT1O0FO0
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which has full rank showing that 7 is a submersion of GL(3,R) into (R3)*. Therefore, 7 is also a submersion since it

inherits the behavior from .

Problem 6. As one of the HWs the coordinate transition map =z — % came up for switching from one chart to another
in the standard affine charts of RP'. Instead of viewing this map passively as a change of coordinates, we can look
at it actively, as a transformation of F : RP! — RP!, defined within the single affine chart Y # 0. Find the linear
transformation L : R? — R? which induces the map f(x) = % in this standard affine chart.

Solution 6.
o From the viewpoint of X = 1 we have to satisfy the mappings (1, m) — <%, 1) and (1,0) — (0,1). The linear
transformation must therefore take the form: 0 1
L= m?
(%)
1

o From the viewpoint of ¥ = 1 we have to satisfy the mappings <E> 1) — (1,m) and (0,1) — (1,0). The linear
transformation must therefore take the form: 0 1
£ (e o)

which misses the infinite point (X = 0).

which misses the infinite point (Y = 0).



