MATH 208-HW \# 6

Nathan Marianovsky

October 23, 2017

Problem 1. Look at all lines in \mathbb{R}^{2} and note that it forms a manifold. What is its dimension? Provide explicit charts.

Solution 1.

- We note that the dimension of $\mathbb{R P}^{1}$ came out to be one since it only required information about the slope to identify a unique line in the space. Building off of this we can say that our manifold, M, is characterized as $M \cong \mathbb{R} \mathbb{P}^{1} \times \mathbb{R}$ because it needs the information about the slope from $\mathbb{R P}^{1}$ and another value for the intercept of the line. Therefore the dimension of M must be two.
- For $\mathbb{R P}^{1}$ it took two charts to cover the space since one line would always be missed by any chart. Using this as motivation we can take the two lines $x=0$ and $y=0$ and notice that it takes two charts to cover the space.
- To obtain all non-vertical lines we define the chart $f: U \subseteq M \rightarrow \mathbb{R}^{2}$ given by:

$$
f:(m, c) \rightarrow\left\{(x, y) \in \mathbb{R}^{2} \mid y=m x+b\right\}
$$

- To obtain all non-horizontal lines we define the chart $g: V \subseteq M \rightarrow \mathbb{R}^{2}$ given by:

$$
g:(m, c) \rightarrow\left\{(x, y) \in \mathbb{R}^{2} \mid x=m y+b\right\}
$$

Intuition tells us that the overlap map will consist of all lines having non-zero/non-infinite slope. To see this explicitly we have:

$$
g \circ f^{-1}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { given by }\left\{(x, y) \in \mathbb{R}^{2} \mid y=m x+b\right\} \rightarrow\left\{(x, y) \in \mathbb{R}^{2} \left\lvert\, x=\frac{1}{m} y-\frac{b}{m}\right. \text { and } m \neq 0\right\}
$$

- It is also interesting to note that $M \cong S^{1} \times \mathbb{R}$. The reason behind this is that $\mathbb{R} \mathbb{P}^{1} \cong S^{1}$. To show this explicitly recall the stereographic atlas $\left\{\left(U_{N}, \phi_{N}\right),\left(U_{S}, \phi_{S}\right)\right\}$ for $U_{N}=S^{1} \backslash\{(0,1)\}$ and $U_{S}=S^{1} \backslash\{(0,-1)\}$ where the maps are given by:

$$
\phi_{N}:(x, y) \rightarrow \frac{x}{1-y} \text { and } \phi_{S}:(x, y) \rightarrow \frac{x}{1+y}
$$

For $\mathbb{R P}^{1}$ we use the atlas $\left\{\left(U_{1}, \phi_{1}\right),\left(U_{2}, \phi_{2}\right)\right\}$ where $U_{1}=U_{2}=\mathbb{R} \backslash\{0\}$. The maps are given by:

$$
\phi_{1}:\left\{(x, y) \in \mathbb{R}^{2} \mid y=m x\right\} \rightarrow \frac{y}{x} \text { and } \phi_{2}:\left\{(x, y) \in \mathbb{R}^{2} \mid x=m y\right\} \rightarrow \frac{x}{y}
$$

Now we define the mapping:

$$
\psi: \mathbb{R} \mathbb{P}^{1} \rightarrow S^{1} \text { given by } \psi(l)=\left\{\begin{array}{lll}
\left(\phi_{N}^{-1} \circ \phi_{1}\right)(l) & \text { if } l \in U_{1} \\
\left(\phi_{S}^{-1} \circ \phi_{2}\right)(l) & \text { if } l \in U_{2}
\end{array}\right.
$$

which is a diffeomorphism between $\mathbb{R P}^{1}$ and S^{1}.

Problem 2. Prove that multiplication $(A, B) \rightarrow A B$ is a smooth map $S O(3, \mathbb{R}) \times S O(3, \mathbb{R}) \rightarrow S O(3, \mathbb{R})$.

Solution 2.

- First we notice that $S O(3, \mathbb{R}) \times S O(3, \mathbb{R}) \hookrightarrow g l(3, \mathbb{R}) \times g l(3, \mathbb{R})$ via the identity mapping. Furthermore, the identity mapping is continuous and injective telling us that $S O(3, \mathbb{R}) \times S O(3, \mathbb{R})$ is an embedded manifold in $g l(3, \mathbb{R}) \times g l(3, \mathbb{R})$.
- Take $A, B \in S O(3, \mathbb{R})$ and notice $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)=1$ and $(A B)^{-1}=B^{-1} A^{-1}=B^{T} A^{T}=(A B)^{T}$. This tells us that $\mathfrak{I m}(f) \subseteq S O(3, \mathbb{R})$ where f represents the matrix multiplication. To show inclusion in the other direction we consider the surjectivity of the map. For any $R \in S O(3, \mathbb{R})$ we can always find the pair $(R, I) \in S O(3, \mathbb{R}) \times S O(3, \mathbb{R})$ s.t. $R I=R$ where I is the identity matrix. Thus, $\mathfrak{I m}(f)=S O(3, \mathbb{R})$.
- Now we show that $f: g l(3, \mathbb{R}) \times g l(3, \mathbb{R}) \rightarrow g l(3, \mathbb{R})$ is a smooth map from which it will follow that it is also smooth on the multiplication of rotation matrices, an embedded manifold. Explicitly we have:

$$
A B=\left(\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \\
a_{4} & a_{5} & a_{6} \\
a_{7} & a_{8} & a_{9}
\end{array}\right)\left(\begin{array}{lll}
b_{1} & b_{4} & b_{7} \\
b_{2} & b_{5} & b_{8} \\
b_{3} & b_{6} & b_{9}
\end{array}\right)=\left(\begin{array}{ccc}
\leftarrow & \overrightarrow{v_{1}} & \rightarrow \\
\leftarrow & \overrightarrow{v_{2}} & \rightarrow \\
\leftarrow & \overrightarrow{v_{3}} & \rightarrow
\end{array}\right)\left(\begin{array}{ccc}
\uparrow & \uparrow & \uparrow \\
\overrightarrow{w_{1}} & \overrightarrow{w_{2}} & \overrightarrow{w_{3}} \\
\downarrow & \downarrow & \downarrow
\end{array}\right)=\left(\begin{array}{ccc}
\left\langle v_{1}, w_{1}\right\rangle & \left\langle v_{1}, w_{2}\right\rangle & \left\langle v_{1}, w_{3}\right\rangle \\
\left\langle v_{2}, w_{1}\right\rangle & \left\langle v_{2}, w_{2}\right\rangle & \left\langle v_{2}, w_{3}\right\rangle \\
\left\langle v_{3}, w_{1}\right\rangle & \left\langle v_{3}, w_{2}\right\rangle & \left\langle v_{3}, w_{3}\right\rangle
\end{array}\right)
$$

So using the charts $\left(W_{1}, \psi_{1}\right)$ and $\left(W_{2}, \psi_{2}\right)$ where:

$$
\begin{aligned}
\psi_{1}: W_{1} \rightarrow \mathbb{R}^{18} & \text { given by } \psi_{1}(A, B)=\left(a_{1}, \ldots, a_{9}, b_{1}, \ldots, b_{9}\right) \\
\psi_{2}: W_{2} \rightarrow \mathbb{R}^{9} & \text { given by } \psi_{2}(C)=\left(c_{1}, \ldots, c_{9}\right)
\end{aligned}
$$

gives us a map from $\zeta=\psi_{2} \circ f \circ \psi_{1}^{-1}: \mathbb{R}^{18} \rightarrow \mathbb{R}^{9}$:

$$
\zeta\left(a_{1}, \ldots, a_{9}, b_{1}, \ldots, b_{9}\right)=\left(\begin{array}{l}
\left\langle v_{1}, w_{1}\right\rangle \\
\left\langle v_{1}, w_{2}\right\rangle \\
\left\langle v_{1}, w_{3}\right\rangle \\
\left\langle v_{2}, w_{1}\right\rangle \\
\left\langle v_{2}, w_{2}\right\rangle \\
\left\langle v_{2}, w_{3}\right\rangle \\
\left\langle v_{3}, w_{1}\right\rangle \\
\left\langle v_{3}, w_{2}\right\rangle \\
\left\langle v_{3}, w_{3}\right\rangle
\end{array}\right)
$$

Since each component of ζ is smooth, then so is ζ.

Problem 3. Prove that inversion $A \rightarrow A^{-1}$ is a smooth map $S O(3, \mathbb{R}) \rightarrow S O(3, \mathbb{R})$.

Solution 3.

- First we notice that $S O(3, \mathbb{R}) \hookrightarrow G L(3, \mathbb{R})$ via the identity mapping. Furthermore, the identity mapping is continuous and injective telling us that $S O(3, \mathbb{R})$ is an embedded manifold in $G L(3, \mathbb{R})$.
- Take $A \in S O(3, \mathbb{R})$ and notice $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}=1$ and $\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{-1}$. This tells us that $\mathfrak{I m}(g) \subseteq S O(3, \mathbb{R})$ where g represents the matrix inversion. To show inclusion in the other direction we consider the surjectivity of the map. For any $R \in S O(3, \mathbb{R})$ we can always find a unique inverse $R^{-1} \in G L(3, \mathbb{R})$ s.t. $R R^{-1}=R^{-1} R=I$. Furthermore, if R is rotation, then so is the inverse. Thus, $\mathfrak{J m}(f)=S O(3, \mathbb{R})$.
- Now we show that $g: G L(3, \mathbb{R}) \rightarrow G L(3, \mathbb{R})$ is a smooth map from which it will follow that it is also smooth on rotation matrices, an embedded manifold. Explicitly we have:

$$
A^{-1}=\frac{1}{\operatorname{det}(A)}\left(\begin{array}{ccc}
M_{11} & -M_{21} & M_{31} \\
-M_{12} & M_{22} & -M_{32} \\
M_{13} & -M_{23} & M_{33}
\end{array}\right)
$$

where $M_{i j}$ represents the determinant of the 2×2 matrix that results from deleting row i and column j of A. This tells us that matrix inversion can be thought of as a map from \mathbb{R}^{9} to \mathbb{R}^{9} that sends $\left(a_{1}, \ldots, a_{9}\right)$ to rational functions of those inputs. Since the determinant is non-zero, we can say that each rational function is smooth implying that g is a smooth map.

Problem 4. Let:

$$
E_{3}=\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

Prove that $X(g)=g E_{3}$ defines a smooth vector field on $S O(3, \mathbb{R})$.

Solution 4. For an arbitrary $g \in S O(3, \mathbb{R})$ we can see the action of the derivation directly:

$$
X(g)=g E_{3}=\left(\begin{array}{lll}
g_{1} & g_{2} & g_{3} \\
g_{4} & g_{5} & g_{6} \\
g_{7} & g_{8} & g_{9}
\end{array}\right)\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)=\left(\begin{array}{lll}
g_{2} & -g_{1} & 0 \\
g_{5} & -g_{4} & 0 \\
g_{8} & -g_{7} & 0
\end{array}\right)
$$

Therefore, the corresponding vector field has to take the form $V(x, y)=y \frac{\partial}{\partial x}-x \frac{\partial}{\partial y}$. The correspondence comes from observing the behavior of the column vectors. Furthermore, since each component function is smooth, so is the vector field.

Problem 5. Prove that the map $\pi: S O(3, \mathbb{R}) \rightarrow S^{2}$ given by $\pi(g)=g e_{3}$ is a submersion.
Solution 5. Notice what this map provides explicitly:

$$
\pi(g)=\left(\begin{array}{lll}
g_{1} & g_{2} & g_{3} \\
g_{4} & g_{5} & g_{6} \\
g_{7} & g_{8} & g_{9}
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)=\left(\begin{array}{l}
g_{3} \\
g_{6} \\
g_{9}
\end{array}\right)
$$

Using the fact that the column vectors of any rotation matrix make up an orthonormal set implies $g_{3}^{2}+g_{6}^{2}+g_{9}^{2}=1$. Thus, $\pi(g) \in S^{2}$. To show that this map is a submersion means we have to show the Jacobian is surjective. To accomplish such a task we need to consider the lifting:

$$
\begin{array}{ll}
G L(3, \mathbb{R}) \xrightarrow{\tilde{\pi}} & \left(\mathbb{R}^{3}\right)^{\times} \\
\kappa \uparrow & \uparrow \alpha \\
S O(3, \mathbb{R}) \xrightarrow{\pi} & S^{2}
\end{array}
$$

where $\kappa(R)=R, \tilde{\pi}(A)=A e_{3}$, and $\alpha(\vec{p})=\vec{p}$. Since $S O(3, \mathbb{R}) \hookrightarrow G L(3, \mathbb{R})$ and $S^{2} \hookrightarrow\left(\mathbb{R}^{3}\right)^{\times}$via the identity maps, they are embedded manifolds. Furthermore, we can see that:

$$
J(\tilde{\pi})=\left(\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

which has full rank showing that $\tilde{\pi}$ is a submersion of $G L(3, \mathbb{R})$ into $\left(\mathbb{R}^{3}\right)^{\times}$. Therefore, π is also a submersion since it inherits the behavior from $\tilde{\pi}$.

Problem 6. As one of the HWs the coordinate transition map $x \rightarrow \frac{1}{x}$ came up for switching from one chart to another in the standard affine charts of $\mathbb{R P}^{1}$. Instead of viewing this map passively as a change of coordinates, we can look at it actively, as a transformation of $F: \mathbb{R P}^{1} \rightarrow \mathbb{R} \mathbb{P}^{1}$, defined within the single affine chart $Y \neq 0$. Find the linear transformation $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ which induces the map $f(x)=\frac{1}{x}$ in this standard affine chart.

Solution 6.

- From the viewpoint of $X=1$ we have to satisfy the mappings $(1, m) \rightarrow\left(\frac{1}{m}, 1\right)$ and $(1,0) \rightarrow(0,1)$. The linear transformation must therefore take the form:

$$
L=\left(\begin{array}{cc}
0 & \frac{1}{m^{2}} \\
1 & 0
\end{array}\right)
$$

which misses the infinite point $(X=0)$.

- From the viewpoint of $Y=1$ we have to satisfy the mappings $\left(\frac{1}{m}, 1\right) \rightarrow(1, m)$ and $(0,1) \rightarrow(1,0)$. The linear transformation must therefore take the form:

$$
L=\left(\begin{array}{cc}
0 & 1 \\
m^{2} & 0
\end{array}\right)
$$

which misses the infinite point $(Y=0)$.

