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Problem 1. Let:

E3 =

0 −1 0
1 0 0
0 0 0


Prove that X(g) = gE3 defines a smooth vector field on SO(3,R).

Solution 1. Begin by considering the map f : GL(3,R)→ SO(3,R) given by f(A) = AAT . We can explicitly compute
the derivative as:

f ′A(h) =
d
dε

∣∣∣
ε=0

f(A+ εh)

=
d
dε

∣∣∣
ε=0

(A+ εh)(A+ εh)T

=
d
dε

∣∣∣
ε=0

(AAT + ε(AhT + hAT ) + ε2hhT )

=
(
(AhT + hAT ) + 2εhhT

)∣∣∣
ε=0

= AhT + hAT

If we restrict A ∈ SO(3,R), then f(A) = I and consequently AhT +hAT = 0. Furthermore, if A = I , then we actually
end up with hT = −h implying h ∈ so(3,R). Thus, 3×3 skew-symmetric matrices span the tangent space for SO(3,R)
(naturally dimensions also match up). Knowing this information tells us that a vector field will consist of component
functions tagged to a direction given by a skew-symmetric matrix. In fact, E3 ∈ so(3,R) which tells us X(g) is a vector
field. To see that is smooth, we just observe that the action of the coordinate function is matrix multiplication which has
already been proven to be smooth.

Problem 2. Prove that the map π : SO(3,R)→ S2 given by π(g) = ge3 is a submersion.

Solution 2. Notice what this map provides explicitly:

π(g) =

g1 g2 g3
g4 g5 g6
g7 g8 g9

0
0
1

 =

g3g6
g9


Using the fact that the column vectors of any rotation matrix make up an orthonormal set implies g23 + g26 + g29 = 1.
Thus, π(g) ∈ S2. To show that this map is a submersion means we have to show the Jacobian is surjective. First we
prove the Equivariant Rank Theorem: Let M and N be smooth manifolds and G a Lie group. Suppose F :M → N is
a smooth map that is equivariant with respect to a transitive smooth G-action on N and M . Then F has constant rank.
• Pick an arbitrary point p ∈M and let φ and ψ denote the G-actions on M and N respectively. Due to the transitivity

of G we can always find a g ∈ G s.t. φg(p) = q and ψg(F (p)) = F (q), which combined with ψg ◦ F = F ◦ φg
provides the commutative diagram:

TpM
dFp−−→ TF (p)N

dφg
y ∼= ∼ =

ydψg
TqM −−→

dFq

TF (q)N

The vertical lines are isomorphisms thereby giving that dFp and dFq have the same rank. Since p and q are arbitrary,
F has constant rank.



This applies directly to our scenario because if we take G = SO(3,R), M = SO(3,R), and N = S2 we know that
there is always a rotation taking

−−−→
π(R) ∈ S2 to

−−−→
π(P ) ∈ S2. Furthermore, there is always a rotation that can take any

R ∈ SO(3,R) to P ∈ SO(3,R). Thus, π : SO(3,R) → S2 has constant rank. Now we want to show that a smooth
surjective map of constant rank is submersion.
• Assume we have F :M → N smooth and constant rank. Suppose F is not a submersion, implying that

rank(F ) = k < n = dim(N). The rank theorem lets us know that at each point there is a smooth coordinate
neighborhood in which F obtains the representation:

F (x1, . . . , xk, xk+1, . . . , xm) = (x1, . . . , xk, 0, . . . , 0)

For any open cover we can pick countably many smooth charts {(Ui, φi)} for M and corresponding charts {(Vi, ψi)}
for N s.t. the sets {Ui} cover M and F maps Ui into Vi. Now using the fact that any k < n dimensional space
will be a measure zero set in Rn when using the Lebesgue measure implies m(F (Ui)) = 0. Consequently:

m
(⋃

F (Ui)
)
≤
∑

m(F (Ui)) = 0

telling us that F (M) ⊂ N is a measure zero set. Therefore, F cannot be surjective. We have proven that
”not submersion =⇒ not surjective” which is logically equivalent to ”surjective =⇒ submersion” for a constant
rank map.

The only thing left is to convince ourselves of the surjectivity of F : SO(3,R)→ S2. The Gram-Schmidt process, given
the set {v1, v2, v3}, spits out the vectors {e1, e2, e3} where:

u1 = v1 and e1 =
u1
‖u1‖

u2 = v2 − proju1
(v2) and e2 =

u2
‖u2‖

u3 = v3 − proju1
(v3)− proju2

(v3) and e3 =
u3
‖u3‖

where the new set consists of orthonormal vectors that could be identified as the columns or rows of a rotation matrix. To
achieve surjectivity we take v1 = (a, b, c) ∈ S2 and note that e1 = v1 where this can be the last column specifically since
order will not matter. So the rest of the task rests on finding two non-zero vectors in R3, not necessarily normalized, that
are linearly independent of v1. Since this is always possible we can take our list of vectors, input them into the Gram
Schmidt process, and have the process spit out the necessary vectors to write a rotational matrix associated to our point
on S2. Finally, surjectivity combined with the fact that F is constant rank tells us F is a submersion. Note that all of
this logic can be extended to say F : SO(n+ 1,R)→ Sn is a submersion.

Problem 3. As one of the HWs the coordinate transition map x→ 1
x came up for switching from one chart to another

in the standard affine charts of RP1. Instead of viewing this map passively as a change of coordinates, we can look
at it actively, as a transformation of F : RP1 → RP1, defined within the single affine chart Y 6= 0. Find the linear
transformation L : R2 → R2 which induces the map f(x) = 1

x in this standard affine chart.

Solution 3. To determine such a transformation we just need to look at three points. First we have the extremes:

M
(
0
1

)
=

(
k1
0

)
and M

(
1
0

)
=

(
0
k2

)
which forces:

M =

(
0 k1
k2 0

)
Since we are looking to invert over the line y = x, we also need:

M
(
1
1

)
=

(
m
m

)
which actually forces k1 = k2. Furthermore, since any scalar multiple will do, the nicest choice is:

M =

(
0 1
1 0

)


