MATH 208 - HW # 4

Nathan Marianovsky October 16, 2017

Problem 1. View x as the affine coordinate for \mathbb{RP}^1 so as to identify \mathbb{RP}^1 with $\mathbb{R} \cup \{\infty\}$. Show that the vector field $\frac{\partial}{\partial x}$ on the open set $\mathbb{R} \subset \mathbb{RP}^1$ extends to a smooth vector field on all of \mathbb{RP}^1 . Does this vector field vanish at ∞ ?

Solution 1. We can use the transformation $x \to \frac{1}{x}$ to send \mathbb{R} to \mathbb{RP}^1 by identifying $\frac{1}{0} = \infty$. As a result we can determine the form of the vector field on \mathbb{RP}^1 as:

 $\frac{\partial}{\partial y} = \frac{\mathrm{d}y}{\mathrm{d}x} \frac{\partial}{\partial x} = -\frac{1}{x^2} \frac{\partial}{\partial x}$

This defines a smooth vector field on \mathbb{RP}^1 . Furthermore, as $x \to \infty$ we must have $\frac{\partial}{\partial y} \to 0$ implying the vector field vanishes as ∞ .

Problem 2. Consider the vector field $V(x) = x^2 \frac{\partial}{\partial x}$ on \mathbb{R} . Show that it is incomplete, by showing solutions blow up in finite time.

Solution 2. Any trajectory along this vector field must satisfy:

$$x'(t) = x^2(t)$$

for some initial condition $x(0) = x_0$. The general solution takes the form:

$$\frac{dx}{dt} = x^2$$

$$\int \frac{dx}{x^2} = \int dt$$

$$-\frac{1}{x} = t + C$$

$$x(t) = -\frac{1}{t + C}$$

Using the initial condition we obtain the particular solution:

$$x(t) = \frac{x_0}{1 - tx_0}$$

For $t = \frac{1}{x_0}$ we have x(t) blow up in finite time.