MATH 208 - HW \# 4

Nathan Marianovsky

October 16, 2017

Problem 1. View x as the affine coordinate for $\mathbb{R} \mathbb{P}^{1}$ so as to identify $\mathbb{R} \mathbb{P}^{1}$ with $\mathbb{R} \cup\{\infty\}$. Show that the vector field $\frac{\partial}{\partial x}$ on the open set $\mathbb{R} \subset \mathbb{R P}^{1}$ extends to a smooth vector field on all of $\mathbb{R} \mathbb{P}^{1}$. Does this vector field vanish at ∞ ?

Solution 1. We can use the transformation $x \rightarrow \frac{1}{x}$ to send \mathbb{R} to $\mathbb{R} \mathbb{P}^{1}$ by identifying $\frac{1}{0}=\infty$. As a result we can determine the form of the vector field on $\mathbb{R P}^{1}$ as:

$$
\frac{\partial}{\partial y}=\frac{\mathrm{d} y}{\mathrm{~d} x} \frac{\partial}{\partial x}=-\frac{1}{x^{2}} \frac{\partial}{\partial x}
$$

This defines a smooth vector field on $\mathbb{R P}^{1}$. Furthermore, as $x \rightarrow \infty$ we must have $\frac{\partial}{\partial y} \rightarrow 0$ implying the vector field vanishes as ∞.

Problem 2. Consider the vector field $V(x)=x^{2} \frac{\partial}{\partial x}$ on \mathbb{R}. Show that it is incomplete, by showing solutions blow up in finite time.

Solution 2. Any trajectory along this vector field must satisfy:

$$
x^{\prime}(t)=x^{2}(t)
$$

for some initial condition $x(0)=x_{0}$. The general solution takes the form:

$$
\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} t} & =x^{2} \\
\int \frac{\mathrm{~d} x}{x^{2}} & =\int \mathrm{d} t \\
-\frac{1}{x} & =t+C \\
x(t) & =-\frac{1}{t+C}
\end{aligned}
$$

Using the initial condition we obtain the particular solution:

$$
x(t)=\frac{x_{0}}{1-t x_{0}}
$$

For $t=\frac{1}{x_{0}}$ we have $x(t)$ blow up in finite time.

