MATH 208 - HW # 4 - Corrections

Nathan Marianovsky October 20, 2017

Problem 1. View x as the affine coordinate for \mathbb{RP}^1 so as to identify \mathbb{RP}^1 with $\mathbb{R} \cup \{\infty\}$. Show that the vector field $\frac{\partial}{\partial x}$ on the open set $\mathbb{R} \subset \mathbb{RP}^1$ extends to a smooth vector field on all of \mathbb{RP}^1 . Does this vector field vanish at ∞ ?

Solution 1. Using the overlap map $y = \frac{1}{x}$ we can say:

$$\frac{\partial}{\partial x} = \frac{\mathrm{d}y}{\mathrm{d}x} \frac{\partial}{\partial y} = -\frac{1}{x^2} \frac{\partial}{\partial y} = -y^2 \frac{\partial}{\partial y}$$

As $x \to \infty$ the line [x, 1] tends to [1, 0]. Consequently $y \to 0$ in this direction telling us that:

$$\frac{\partial}{\partial x} \to 0$$
 as $x \to \infty$

Therefore, $\frac{\partial}{\partial x}$ extends to a smooth vector field on $\mathbb{R} \cup \{\infty\}$ that vanishes at ∞ .