MATH 208-HW \# 3-Corrections

Nathan Marianovsky

October 20, 2017

Problem 1. Prove that the image of f from the previous problem is $S O(3, \mathbb{R}) \subset g l(3, \mathbb{R})$.

Solution 1.

- The following tells us that $\mathfrak{I m}(f) \subseteq S O(3, \mathbb{R})$:
- $\forall A \in \operatorname{so}(3, \mathbb{R})$ we have $\operatorname{det}(A)=0$ and $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{tr}(A)}=e^{0}=1$.
- If $P=e^{A}$ for an $A \in \operatorname{so}(3, \mathbb{R})$, then $P^{-1}=e^{-A}=e^{A^{T}}=\left(e^{A}\right)^{T}=P^{T}$ implying $e^{A} \in S O(3, \mathbb{R})$.
- We also check that f is injective by determining the kernel, $\operatorname{ker}(f)=\{A \in \operatorname{so}(3, \mathbb{R}) \mid f(A)=I\}$, of the group homomorphism:

$$
\begin{aligned}
& I=f(A) \\
& I=I+\frac{\sin (\theta)}{\theta} A+\frac{\cos (\theta)-1}{\theta^{2}} A^{2} \\
& 0=A\left(\frac{\sin (\theta)}{\theta} I+\frac{\cos (\theta)-1}{\theta^{2}} A\right) \\
& A=0, \frac{\theta \sin (\theta)}{1-\cos (\theta)} I
\end{aligned}
$$

Since no multiple of the identity is skew-symmetric it must be that $A=0$ showing that the kernel is trivial.

- Now we handle surjectivity:
- To accomplish this we are going to need Rodrigues' Rotation Formula which states given a vector $v \in \mathbb{R}^{3}$ and a unit vector $\hat{k} \in \mathbb{R}^{3}$ describing an axis of rotation about which v rotates by an angle θ, according to the right hand rule the resulting vector after rotation is defined as:

$$
v^{\prime}=\cos (\theta) v+\sin (\theta)(\hat{k} \times v)+(1-\cos (\theta))(\hat{k} \cdot v) \hat{k}
$$

* Let us quickly derive this formula. To begin take the vector we want to rotate and split it into components relative to the axis \hat{k} :

$$
v=v_{\perp}+v_{\|}
$$

where the parallel component is nothing more than:

$$
v_{\|}=(v \cdot \hat{k}) \hat{k}
$$

and the perpendicular component is:

$$
v_{\perp}=v-v_{\|}=v-(\hat{k} \cdot v) \hat{k}
$$

We now want to use the known identity:

$$
(a \cdot c) b-(a \cdot b) c=a \times(b \times c)
$$

to rewrite the perpendicular component as:

$$
v_{\perp}=-\hat{k} \times(\hat{k} \times v)
$$

To continue we note that since we are rotating about the axis \hat{k}, the component parallel to it will not change under the rotation. Therefore, we have:

$$
v_{\|}^{\prime}=v_{\|}
$$

The perpendicular component will transform according to:

$$
\begin{gathered}
\left\|v_{\perp}^{\prime}\right\|=\left\|v_{\perp}\right\| \\
v_{\perp}^{\prime}=\cos (\theta) v_{\perp}+\sin (\theta)\left(\hat{k} \times v_{\perp}\right)
\end{gathered}
$$

which can be simplified because:

$$
\hat{k} \times v_{\perp}=\hat{k} \times\left(v-v_{\|}\right)=\hat{k} \times v-\hat{k} \times v_{\|}=\hat{k} \times v
$$

giving:

$$
v_{\perp}^{\prime}=\cos (\theta) v_{\perp}+\sin (\theta)(\hat{k} \times v)
$$

We know that the above transformation preserves the norm because v_{\perp} and $\hat{k} \times v$ have the same length. Now we can write down the explicit form of the rotated vector as:

$$
\begin{aligned}
v^{\prime} & =v_{\|}^{\prime}+v_{\perp}^{\prime} \\
& =v_{\|}+\cos (\theta) v_{\perp}+\sin (\theta)(\hat{k} \times v) \\
& =v_{\|}+\cos (\theta)\left(v-v_{\|}\right)+\sin (\theta)(\hat{k} \times v) \\
& =\cos (\theta) v+(1-\cos (\theta)) v_{\|}+\sin (\theta)(\hat{k} \times v) \\
& =\cos (\theta) v+\sin (\theta)(\hat{k} \times v)+(1-\cos (\theta))(\hat{k} \cdot v) \hat{k}
\end{aligned}
$$

- With the rotation formula in hand, we want to transform it into matrix mode. So we define the following:

$$
K=\left(\begin{array}{ccc}
0 & -k_{z} & k_{y} \\
k_{z} & 0 & -k_{x} \\
-k_{y} & k_{x} & 0
\end{array}\right) \quad \text { and } \quad K^{2}=\left(\begin{array}{ccc}
-k_{y}^{2}-k_{z}^{2} & k_{x} k_{y} & k_{x} k_{z} \\
k_{x} k_{y} & -k_{x}^{2}-k_{z}^{2} & k_{y} k_{z} \\
k_{x} k_{z} & k_{y} k_{z} & -k_{x}^{2}-k_{y}^{2}
\end{array}\right)
$$

where:

$$
K v=\hat{k} \times v \quad \text { and } \quad K^{2} v+v=(\hat{k} \cdot v) \hat{k}
$$

allows us to rewrite the rotation formula as:

$$
\begin{aligned}
v^{\prime} & =\cos (\theta) v+\sin (\theta)(\hat{k} \times v)+(1-\cos (\theta))(\hat{k} \cdot v) \hat{k} \\
& =\cos (\theta) v+\sin (\theta) K v+(1-\cos (\theta))\left(K^{2} v+v\right) \\
& =v+\sin (\theta) K v+(1-\cos (\theta)) K^{2} v
\end{aligned}
$$

This allows us to say that any $R \in S O(3, \mathbb{R})$ can be written down as:

$$
R=I+\sin (\theta) K+(1-\cos (\theta)) K^{2}
$$

- If we take R as above then we can always find a $K \in \operatorname{so}(3, \mathbb{R})$ s.t. $e^{K}=R$ with $k_{1}^{2}+k_{2}^{2}+k_{3}^{2}=1$. This basically shows surjectivity, however we would like to get rid of the restriction on the components of K. In full generality we had:

$$
e^{A}=I+\frac{\sin (\theta)}{\theta} A+\frac{(1-\cos (\theta))}{\theta^{2}} A^{2}
$$

Therefore, we can say that given a rotation matrix, R, we can always find an $A \in s o(3, \mathbb{R})$ s.t.:

$$
e^{\theta A}=R=I+\sin (\theta) A+(1-\cos (\theta)) A^{2}
$$

which lifts the restriction on the components summing to one. Thus, $\mathfrak{I m}(f) \cong S O(3, \mathbb{R})$.

