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Problem 1. Prove that the image of f from the previous problem is SO(3,R) ⊂ gl(3,R).

Solution 1.
• The following tells us that Im(f) ⊆ SO(3,R):

– ∀ A ∈ so(3,R) we have det(A) = 0 and det(eA) = etr(A) = e0 = 1.
– If P = eA for an A ∈ so(3,R), then P−1 = e−A = eA

T

= (eA)T = P T implying eA ∈ SO(3,R).

• We also check that f is injective by determining the kernel, ker(f) = {A ∈ so(3,R) | f(A) = I}, of the group
homomorphism:
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Since no multiple of the identity is skew-symmetric it must be that A = 0 showing that the kernel is trivial.

• Now we handle surjectivity:
– To accomplish this we are going to need Rodrigues’ Rotation Formula which states given a vector v ∈ R3 and

a unit vector k̂ ∈ R3 describing an axis of rotation about which v rotates by an angle θ, according to the right
hand rule the resulting vector after rotation is defined as:

v′ = cos(θ)v + sin(θ)(k̂ × v) + (1− cos(θ))(k̂ · v)k̂

∗ Let us quickly derive this formula. To begin take the vector we want to rotate and split it into components
relative to the axis k̂:

v = v⊥ + v‖

where the parallel component is nothing more than:

v‖ = (v · k̂)k̂

and the perpendicular component is:

v⊥ = v − v‖ = v − (k̂ · v)k̂

We now want to use the known identity:

(a · c)b− (a · b)c = a× (b× c)

to rewrite the perpendicular component as:

v⊥ = −k̂ × (k̂ × v)

To continue we note that since we are rotating about the axis k̂, the component parallel to it will not change
under the rotation. Therefore, we have:

v′‖ = v‖



The perpendicular component will transform according to:

‖v′⊥‖ = ‖v⊥‖
v′⊥ = cos(θ)v⊥ + sin(θ)(k̂ × v⊥)

which can be simplified because:

k̂ × v⊥ = k̂ × (v − v‖) = k̂ × v − k̂ × v‖ = k̂ × v

giving:
v′⊥ = cos(θ)v⊥ + sin(θ)(k̂ × v)

We know that the above transformation preserves the norm because v⊥ and k̂×v have the same length. Now
we can write down the explicit form of the rotated vector as:

v′ = v′‖ + v′⊥

= v‖ + cos(θ)v⊥ + sin(θ)(k̂ × v)
= v‖ + cos(θ)(v − v‖) + sin(θ)(k̂ × v)
= cos(θ)v + (1− cos(θ))v‖ + sin(θ)(k̂ × v)
= cos(θ)v + sin(θ)(k̂ × v) + (1− cos(θ))(k̂ · v)k̂

– With the rotation formula in hand, we want to transform it into matrix mode. So we define the following:

K =

 0 −kz ky
kz 0 −kx
−ky kx 0

 and K2 =

−k2y − k2z kxky kxkz
kxky −k2x − k2z kykz
kxkz kykz −k2x − k2y


where:

Kv = k̂ × v and K2v + v = (k̂ · v)k̂

allows us to rewrite the rotation formula as:

v′ = cos(θ)v + sin(θ)(k̂ × v) + (1− cos(θ))(k̂ · v)k̂
= cos(θ)v + sin(θ)Kv + (1− cos(θ))(K2v + v)

= v + sin(θ)Kv + (1− cos(θ))K2v

This allows us to say that any R ∈ SO(3,R) can be written down as:

R = I + sin(θ)K + (1− cos(θ))K2

– If we take R as above then we can always find a K ∈ so(3,R) s.t. eK = R with k21 + k22 + k23 = 1. This
basically shows surjectivity, however we would like to get rid of the restriction on the components of K. In
full generality we had:

eA = I +
sin(θ)
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Therefore, we can say that given a rotation matrix, R, we can always find an A ∈ so(3,R) s.t.:

eθA = R = I + sin(θ)A+ (1− cos(θ))A2

which lifts the restriction on the components summing to one. Thus, Im(f) ∼= SO(3,R).


