MATH 208-HW \# 2

Nathan Marianovsky

October 9, 2017

Problem 1. Prove that the cone, $x^{2}+y^{2}=z^{2}$ for $z \geq 0$, is a topological manifold, but is not a smooth embedded manifold in Euclidean 3-space.

Solution 1.

- To show that the cone, $\mathcal{C}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=z^{2}\right.$ and $\left.z \geq 0\right\}$, is a topological manifold we need to find a homeomorphism between \mathbb{R}^{n} and \mathcal{C} for some fixed n. The most natural choice is projection onto the $x y$-plane ($n=2$) given by:

$$
f(x, y, z)=(x, y) \text { and } f^{-1}(x, y)=\left(x, y, \sqrt{x^{2}+y^{2}}\right)
$$

We check that f is a homeomorphism directly:

- If $f\left(x_{1}, y_{1}, z_{1}\right)=f\left(x_{2}, y_{2}, z_{2}\right)$, then $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$ implying $x_{1}=x_{2}$ and $y_{1}=y_{2}$. Thus, f is injective.
- For any $\vec{q}=(x, y) \in \mathbb{R}^{2}$ we can always find a unique point $\vec{p}=\left(x, y, \sqrt{x^{2}+y^{2}}\right) \in \mathcal{C}$ s.t. $f(\vec{p})=\vec{q}$. Thus, f is surjective.
- Now using the fact that projection maps are continuous we know that f is continuous.
- For f^{-1} we need to consider open sets in the topology endowed on the cone as a subspace of \mathbb{R}^{3}. Any such open set takes the form $U=\mathcal{C} \bigcap B_{r}(\vec{p})$ where $B_{r}(\vec{p})$ is an open ball in \mathbb{R}^{3}. Therefore, the open sets in this topology correspond exactly to the level curves of the cone. So taking any level curve $U \subseteq \mathcal{C}$ provides $f^{-1}(U)=\mathcal{B}_{\rho}(0)$ for $\mathcal{B}_{\rho}(0) \subseteq \mathbb{R}^{2}$ open and $\rho=\sqrt{x^{2}+y^{2}}$.
- To see that \mathcal{C} is not a smooth manifold we need to show that there is weird behavior occuring in the derivative at the origin. The gradient corresponding to our surface takes the form:

$$
\nabla f=\left(\begin{array}{c}
\frac{x}{\sqrt{x^{2}+y^{2}}} \\
\frac{y}{\sqrt{x^{2}+y^{2}}} \\
-1
\end{array}\right)
$$

To show that the gradient does not behave nicely at the origin we observe the value it decides to take on depending on the direction from which we approach. By letting $y=0$ we arrive at:

$$
\nabla f=\left(\begin{array}{c}
\operatorname{sgn}(x) \\
0 \\
-1
\end{array}\right)
$$

Knowing that $\operatorname{sgn}(x) \rightarrow-1$ if $x \rightarrow 0^{-}$and $\operatorname{sgn}(x) \rightarrow 1$ if $x \rightarrow 0^{+}$we arrive at the conclusion that ∇f cannot be defined at the origin. Consequently, there does not exist a diffeomorphism between \mathcal{C} and \mathbb{R}^{2} implying \mathcal{C} is not a smooth manifold.

Problem 2. Show that $u=x y$ and $v=y$ is not a good change of coordinates near the origin, while on the other hand $u=(x+.005)(y+.001)$ and $v=y$ is a good change of coordinates near the origin.

Solution 2.

- The first change of coordinates can be characterized as:

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { given by } f(x, y)=\binom{x y}{y}
$$

Where the Jacobian takes the form:

$$
J(f)=\left(\begin{array}{ll}
y & x \\
0 & 1
\end{array}\right)
$$

As a result, $\operatorname{det}(J(f))=y$. Therefore, the Jacobian is not of full rank along the x-axis. So for any neighborhood of the origin, $\mathcal{B}_{r}(0)$, we will always have the Jacobian non-invertible. By the Inverse Function Theorem we can say that the change of coordinates cannot be inverted at the origin.

- The second change of coordinates can be characterized as:

$$
g: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \text { given by } g(x, y)=\binom{(x+.005)(y+.001)}{y}
$$

Where the Jacobian takes the form:

$$
J(g)=\left(\begin{array}{cc}
y+.001 & x+.005 \\
0 & 1
\end{array}\right)
$$

As a result, $\operatorname{det}(J(g))=y+.001$. Therefore, the Jacobian is not of full rank along a copy of the x-axis at height $y=-.001$. By the Inverse Function Theorem we can say that g^{-1} exists in a neighborhood of the origin that does contain any of the bad points mentioned right before. For example you can consider $\mathcal{B}_{.0005}(0)$ to be such a neighborhood.

