Geometry and Topology Preliminary Examination. UC Santa Cruz. Fall 2017

1. Recall that two submanifolds X and Y of a manifold M intersect transversely if for any $x \in X \cap Y$ we have $T_{x} X+T_{x} Y=T_{x} M$. Let X be a submanifold of $M=\mathbb{R} \times P$, where P is a smooth manifold, and $\pi: M \rightarrow \mathbb{R}$ be the projection to the first component. Prove that X and the slice $\{t\} \times P$ intersect transversely if and only if t is a regular value of the function $\left.\pi\right|_{X}$.
2. Let $F: \mathbb{C} \rightarrow \mathbb{C}$ be a holomorphic function. Show that F is necessarily orientation preserving at its regular points, i.e., $F^{*}(d x \wedge d y)=$ $f d x \wedge d y$ with $f>0$.
3. Let ω be an n-form on the n-dimensional manifold M. Assume that $\omega_{p} \neq 0$ at some point $p \in M$. Show that there exist local coordinates x_{1}, \ldots, x_{n} near p such that $\omega=d x_{1} \wedge \ldots \wedge d x_{n}$.
4. Let $K \subset \mathbb{R}^{3}$ be a cube made of wire, which is to say the union of the vertices and edges of the unit cube.
(1) What is the fundamental groups of K ?
(2) Thicken K a bit, forming a smooth three-dimensional manifold whose boundary is the smooth surface X. Thus X is the set of all points a distance ε from K. (Smooth the corners of X if neccessary. Any $\varepsilon<1 / 2$ works.) What are the homology groups of X ?
5. Show that the integral homology groups H_{i} of a closed orientable simply connected 4-manifold are $H_{0} \cong H_{4} \cong \mathbb{Z}, H_{1}=H_{3}=0$, and $H_{2} \cong \mathbb{Z}^{r}$, a free abelian group of some rank $r \geq 0$.
6. Prove or disprove: $S O(3)$ admits a metric of constant sectional curvature.
7. View $x \in \mathbb{R}$ as the affine coordinate for $\mathbb{R} P^{1} \cong \mathbb{R} \cup\{\infty\}$ and let y be the 'other' affine coordinate centered at ∞.
A) Find the coordinate transition map relating x and y.
B) Express the translation vector field $\frac{\partial}{\partial x}$ on the line \mathbb{R} in terms of the y- coordinates at infinity.
8. Let E_{1}, E_{2}, E_{3} be pointwise linearly independent vector fields on some manifold and suppose that $\left[E_{1}, E_{2}\right]=E_{3}$. Find necessary and sufficient conditions for functions f, g so as to insure that $\left[f E_{1}, g E_{2}\right]=$ E_{3}.
