Geometry and Topology Prelim, UCSC, Fall 2016

1. Consider the vector fields

$$
v=y \frac{\partial}{\partial x}+x \frac{\partial}{\partial y}-z^{m} \frac{\partial}{\partial z}
$$

and

$$
w=\frac{\partial}{\partial x}+z \frac{\partial}{\partial z}
$$

on \mathbb{R}^{3}, where $m \geq 0$.
(a) Find the (local) flow of v. Is v complete? (Note: Pay attention to m.)
(b) Find the bracket $[v, w]$.
(c) Is the distribution spanned by v and w (on the open subset where these vector fields are linearly independent) integrable?
2. Let α and β be differential forms on a manifold M and let X be a vector field. Prove that

$$
L_{X}(\alpha \wedge \beta)=\left(L_{X} \alpha\right) \wedge \beta+\alpha \wedge\left(L_{X} \beta\right)
$$

3. Is there an embedding of the Klein bottle in \mathbb{R}^{4} ? Construct such an embedding or prove that it does not exist.
4. Consider the special orthogonal group $\mathrm{SO}(n)$, i.e., $\mathrm{SO}(n)$ is formed by $n \times n$ matrices A with $A A^{T}=I$ and $\operatorname{det} A=1$.
(a) Show that $\mathrm{SO}(n)$ is a smooth manifold.
(b) Show that $\mathrm{SO}(n)$ is compact.
(c) Is the tangent bundle $T \mathrm{SO}(n)$ trivial? Justify your answer.
5. Let $(G, *)$ be a topological group with multiplication $*: G \times G \rightarrow G$. In G, there are two ways to multiply loops based at the identity element $e \in G$:
(i) Use the usual concatenation of loops,

$$
(f \cdot g)(s)= \begin{cases}f(2 s), & 0 \leq s \leq 1 / 2 \\ g(2 s-1), & 1 / 2 \leq s \leq 1\end{cases}
$$

(ii) Use the group structure in G :

$$
(f * g)(s)=f(s) * g(s), \quad 0 \leq s \leq 1
$$

Show that $f \cdot g \simeq f * g$ for all loops f and g based at e. Thus, two ways of multiplying loops define the same product structure in $\pi_{1}(G, e)$. Next show that $\pi_{1}(G, e)$ is in fact abelian regardless of whether G is abelian or not.
6. Let X be the topological space obtained by attaching the boundary ∂D of the closed unit disc D to the unit circle via a map $\varphi: \partial D=$ $S^{1} \rightarrow S^{1}$ of degree three. (For instance, we can take $\varphi(z)=z^{3}$, where we view S^{1} as the unit circle in \mathbb{C}.) Find the homology of X with integer coefficients. What changes if we use rational coefficients?
7. Consider the upper half-plane $M=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\}$ equipped with the Riemannian metric

$$
g=\frac{d x \otimes d x+d y \otimes d y}{y^{2}} .
$$

(a) Find the equation $t \mapsto(x(t), y(t))$ of the geodesic starting at $(0,1)$ with initial velocity $(0,1)$. (Hints: You can use the fact that the Christoffel symbols of g are zero except for $\Gamma_{x x}^{y}=1 / y$ and $\Gamma_{x y}^{x}=\Gamma_{y x}^{y}=\Gamma_{y y}^{y}=-1 / y$. You don't need to calculate them. Alternatively, and this is a better method, you can base your argument on the observation that the metric is invariant with respect to the reflection in the y-axis.)
(b) What is the distance between the points $(0, a)$ and $(0, b)$?

