Geometry and Topology Preliminary Exam, Fall 2014

[1] Which of the following manifolds are diffeomorphic and which are not:
(a) $\mathbb{R} P^{2}, \mathbb{C} P^{1}$, and S^{2}.
(b) $\mathbb{R} P^{3}, S^{3}, \mathrm{SO}(3), \mathrm{SU}(2)$, and the unit tangent bundle to S^{2}.

Justify your conclusions.
[2] Consider the following two vector fields v, w on the plane

$$
v=x \frac{\partial}{\partial y}+y \frac{\partial}{\partial x}, \quad w=x^{2} \frac{\partial}{\partial x}+y^{2} \frac{\partial}{\partial y}
$$

(a) Are these vector fields complete?
(b) Find the flow of v.
(c) Find the bracket $[v, w]$.
[3] Consider the map of wedge product $\phi: \mathbb{R}^{3} \times \mathbb{R}^{3} \rightarrow \Lambda^{2} \mathbb{R}^{3}$ which sends v, w to their wedge product $v \wedge w$.
(i) What are the critical points of ϕ ?
(ii) What are the critical values of ϕ ?
(iii) What is the dimension of the image of ϕ ?
(iv) What is the image of ϕ ?
[4] Let $M=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}=1\right\}$ be the cylinder of unit radius.
(a) Show that the geodesics on M are the helices, that is, curves which cut each generator (= each vertical line) at the same angle (or have a constant angle with the z-axis), the generators themselves, and the circles of intersection with planes $z=$ constant.
(b) How many geodesics connect two given points p, q on M ?
(c) Show that a geodesic starting at a point (x, y, z) in M does not minimize arc length after it passes through the antipodal line $\{(-x,-y, t) \mid t \in \mathbb{R}\}$.
[5] On a closed orientable surface Σ_{g+h} of genus $g+h$ with $g, h \geq 0$, let C be a loop that separates Σ_{g+h} into two compact surfaces $\Sigma_{g}^{\prime}=\Sigma_{g}-\{$ open disc $\}$ and $\Sigma_{h}^{\prime}=\Sigma_{h}-\{$ open disc $\}$ of genus g and h, respectively. Show that Σ_{g}^{\prime} does not retract onto its boundary C, and hence Σ_{g+h} does not retract onto C.
[6] Construct a 3 -dimensional Δ-complex X from four oriented tetrahedra $T_{1}, T_{2}, T_{3}, T_{4}$ by the following two steps. (The picture below uses six tetrahedra. Here we use four for simplicity.) First arrange the tetrahedra in a cyclic pattern so that all four tetrahedra share the same single edge, and each T_{i} shares a common vertical face with its two neighbors T_{i-1} and T_{i+1}, subscripts taken mod 4 . Then identify the bottom face of T_{i} with the top face of T_{i+1} by orientation preserving homeomorphism for each i. Show that the homology of X in dimensions $0,1,2,3$ are $\mathbb{Z}, \mathbb{Z}_{4}, 0, \mathbb{Z}$.

[7] Show that if M is a compact smooth orientable surface in \mathbb{R}^{3} that is not diffeomorphic to a sphere, then there is a point p in M at which the Gaussian curvature is negative.

