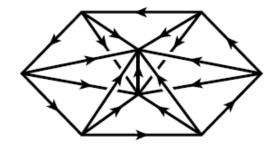
Geometry and Topology Preliminary Exam, Fall 2014

- [1] Which of the following manifolds are diffeomorphic and which are not:
 - (a) $\mathbb{R}P^2$, $\mathbb{C}P^1$, and S^2 .
 - (b) $\mathbb{R}P^3$, S^3 , SO(3), SU(2), and the unit tangent bundle to S^2 . Justify your conclusions.
- [2] Consider the following two vector fields v, w on the plane

$$v = x \frac{\partial}{\partial y} + y \frac{\partial}{\partial x}, \qquad w = x^2 \frac{\partial}{\partial x} + y^2 \frac{\partial}{\partial y}.$$

- (a) Are these vector fields complete?
- (b) Find the flow of v.
- (c) Find the bracket [v, w].
- [3] Consider the map of wedge product $\phi: \mathbb{R}^3 \times \mathbb{R}^3 \to \Lambda^2 \mathbb{R}^3$ which sends v, w to their wedge product $v \wedge w$.
 - (i) What are the critical points of ϕ ?
 - (ii) What are the critical values of ϕ ?
 - (iii) What is the dimension of the image of ϕ ?
 - (iv) What is the image of ϕ ?
- [4] Let $M = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 = 1\}$ be the cylinder of unit radius.
- (a) Show that the geodesics on M are the helices, that is, curves which cut each generator (= each vertical line) at the same angle (or have a constant angle with the z-axis), the generators themselves, and the circles of intersection with planes z = constant.
 - (b) How many geodesics connect two given points p, q on M?
- (c) Show that a geodesic starting at a point (x, y, z) in M does not minimize arc length after it passes through the antipodal line $\{(-x, -y, t) \mid t \in \mathbb{R}\}.$
- [5] On a closed orientable surface Σ_{g+h} of genus g+h with $g,h\geq 0$, let C be a loop that separates Σ_{g+h} into two compact surfaces $\Sigma'_g=\Sigma_g-\{\text{open disc}\}$ and $\Sigma'_h=\Sigma_h-\{\text{open disc}\}$ of genus g and h, respectively. Show that Σ'_g does not retract onto its boundary C, and hence Σ_{g+h} does not retract onto C.
- [6] Construct a 3-dimensional Δ -complex X from four oriented tetrahedra T_1, T_2, T_3, T_4 by the following two steps. (The picture below uses six tetrahedra. Here we use **four** for simplicity.) First arrange the tetrahedra in a cyclic pattern so that all four tetrahedra share the same single edge, and each T_i shares a common vertical face with its two neighbors T_{i-1} and T_{i+1} , subscripts taken mod 4. Then identify the bottom face of T_i with the top face of T_{i+1} by orientation preserving homeomorphism for each i. Show that the homology of X in dimensions 0, 1, 2, 3 are $\mathbb{Z}, \mathbb{Z}_4, 0, \mathbb{Z}$.



[7] Show that if M is a compact smooth orientable surface in \mathbb{R}^3 that is not diffeomorphic to a sphere, then there is a point p in M at which the Gaussian curvature is negative.