Then there is a unique isomorphism Ψ . $V \otimes H$ $\Phi \circ \pi$, where $\pi \colon V \times W \to V \otimes W$ is the canonical projection. [Remark: This shows that the details of the construction used to define the tensor product are irrelevant, as long as the resulting space satisfies the characteristic property.]

- 11-2. If V is any finite-dimensional real vector space, prove that there are canonical isomorphisms $\mathbb{R} \otimes V \cong V \cong V \otimes \mathbb{R}$.
- 11-3. Let V and W be finite-dimensional real vector spaces. Prove that there is a canonical (basis-independent) isomorphism between $V^* \otimes W$ and the space $\operatorname{Hom}(V,W)$ of linear maps from V to W.
- 11-4. Let M be a smooth n-manifold, and let σ be a smooth covariant ktensor field on M. If $(U,(x^i))$ and $(\widetilde{U},(\widetilde{x}^j))$ are overlapping smooth
 charts on M, we can write

$$\sigma = \sigma_{i_1...i_k} dx^{i_1} \otimes \cdots \otimes dx^{i_k} = \widetilde{\sigma}_{j_1...j_k} d\widetilde{x}^{j_1} \otimes \cdots \otimes d\widetilde{x}^{j_k}.$$

Compute a transformation law analogous to (6.7) expressing the component functions $\sigma_{i_1...i_k}$ in terms of $\widetilde{\sigma}_{j_1...j_k}$.

- 11-5. Generalize the coordinate transformation law of Problem 11-4 to mixed tensors of any rank.
- 11-6. Suppose $F: M \to N$ is a diffeomorphism. For any pair of nonnegative integers k, l, show that there are smooth bundle isomorphisms $F_*: T_l^k M \to T_l^k N$ and $F^*: T_l^k N \to T_l^k M$ satisfying

$$F_*S(X_1, ..., X_k, \omega^1, ..., \omega^l)$$

$$= S(F_*^{-1}X_1, ..., F_*^{-1}X_k, F^*\omega^1, ..., F^*\omega^l),$$

$$F^*S(X_1, ..., X_k, \omega^1, ..., \omega^l)$$

$$= S(F_*X_1, ..., F_*X_k, F^{-1*}\omega^1, ..., F^{-1*}\omega^l).$$

- 11-7. Let M be a smooth manifold.
 - (a) Given a smooth covariant k-tensor field $\tau \in \mathfrak{I}^k(M)$, show that the map $\mathfrak{I}(M) \times \cdots \times \mathfrak{I}(M) \to C^{\infty}(M)$ defined by

$$(X_1,\ldots,X_k)\mapsto \tau(X_1,\ldots,X_k)$$

11-

11-1