canonical isomorphisms K & V

11-3. Let V and W be finite-dimensional real vector spaces. Prove that
there is a canonical (basis-independent) jsomorphism between V*@W
and the space Hom(V, W) of linear maps from V to W.

11-4. Let M be a smooth n-manifold, and let o be a smooth covariant k-
tensor field on M. If (U, (z*)) and (U, (27)) are overlapping smooth
charts on M, we can write
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Compute a transformation law analogous to (6.7) expressing the
component functions o;,  ;, in terms of 0, ;.

11-5. Generalize the coordinate transformation law of Problem 11-4 to
mixed tensors of any rank.
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11-7. Let M be g smooth manifold.
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