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[ et M be a smooth manifold and let {Ua }aea be an open cover of M.
Suppose for each o, 3 € A we are given a smooth map Tag3: iUy =
GL(k,R) such that (5.6) is satisfied for all a, 3,7 € A. Show that
there is a smooth rank-k vector bundle E — M with smooth local
trivializations @ : 71 (U,) = Ua «R¥ whose transition functions are
the given maps Tag3- [Hint: Define an appropriate equivalence relation

on [ .. 4(Us x R¥), and use the bundle construction lemma.|

F — M be two smooth rank-k vector bundles

Let 7: E — M and 7:
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U,. Let {1,5} and {T.p} denote the transiicvion functions determined
by the given local i rivializations of £ and [, respectively. .Show that
E and E are smoothly isomorphic OVer M if and only if for each
o & A there exists a srﬁ()oth map 0o Ua = GL(k,R) such that

Tap(p) = Oa (p) " ‘rap(@)opl®) P € UaNUp |
Let U = 8!~ {1} and V = sl {1}, and define 7 LY. =% GL(1,R)
by
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union of all these k-dimensional subspace

and let 7: T — G, (V) be the natural map sending each poj
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into a smooth rank-k vector bundle over Gr(V), with 7 as B8
and with the vector Space structure on each fiber inherite
[Remark: T s sometimes called the tautological vector bus
Gr(V), because the fiber over each point § € Gg(V) is S i
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Mébius bundle. (See Problems 9-2, 5-6, and 5-1

- Let Vg be the Category whose ob
tor spaces ang wh
Covariant fyye

jects are finite-dimens}
0S¢ morphisms are linear isomorphis
tor from Vo to itself, for each finite-dimensj




