Drobles

- If E is a vector bundle over a topological space M, show that the projection map $\pi \colon E \to M$ is a homotopy equivalence.
- prove that the space E constructed in Example 5.2, together with the projection $\pi: E \to \mathbb{S}^1$, is a smooth rank-1 vector bundle over \mathbb{S}^1 , and show that it is nontrivial.
- 5-3. Let $\pi \colon E \to M$ be a smooth vector bundle of rank k over a smooth manifold M. Suppose $\{U_{\alpha}\}_{\alpha \in A}$ is an open cover of M, and for each $\alpha \in A$ we are given a smooth local trivialization $\Phi_{\alpha} \colon \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ of E. For each $\alpha, \beta \in A$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$, let $\tau_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to GL(k, \mathbb{R})$ be the transition function defined by (5.3). Show that the following identity is satisfied for all $\alpha, \beta, \gamma \in A$:

$$\tau_{\alpha\beta}(p)\tau_{\beta\gamma}(p) = \tau_{\alpha\gamma}(p), \qquad p \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}.$$
(5.6)

(Here juxtaposition of matrices represents matrix multiplication.)

- 5-4. Let M be a smooth manifold and let $\{U_{\alpha}\}_{\alpha\in A}$ be an open cover of M. Suppose for each $\alpha, \beta \in A$ we are given a smooth map $\tau_{\alpha\beta} \colon U_{\alpha} \cap U_{\beta} \to GL(k,\mathbb{R})$ such that (5.6) is satisfied for all $\alpha, \beta, \gamma \in A$. Show that there is a smooth rank-k vector bundle $E \to M$ with smooth local trivializations $\Phi_{\alpha} \colon \pi^{-1}(U_{\alpha}) \to U_{\alpha} \times \mathbb{R}^{k}$ whose transition functions are the given maps $\tau_{\alpha\beta}$. [Hint: Define an appropriate equivalence relation on $\coprod_{\alpha \in A} (U_{\alpha} \times \mathbb{R}^{k})$, and use the bundle construction lemma.]
- 5-5. Let $\pi\colon E\to M$ and $\widetilde{\pi}\colon \widetilde{E}\to M$ be two smooth rank-k vector bundles over a smooth manifold M. Suppose $\{U_{\alpha}\}_{\alpha\in A}$ is an open cover of M such that both E and \widetilde{E} admit smooth local trivializations over each U_{α} . Let $\{\tau_{\alpha\beta}\}$ and $\{\widetilde{\tau}_{\alpha\beta}\}$ denote the transition functions determined by the given local trivializations of E and \widetilde{E} , respectively. Show that E and E are smoothly isomorphic over E if and only if for each E and E are smoothly isomorphic over E and E are smoothly isomorphic.

$$\widetilde{\tau}_{\alpha\beta}(p) = \sigma_{\alpha}(p)^{-1} \tau_{\alpha\beta}(p) \sigma_{\beta}(p), \qquad p \in U_{\alpha} \cap U_{\beta}.$$

5-6. Let $U = \mathbb{S}^1 \setminus \{1\}$ and $V = \mathbb{S}^1 \setminus \{-1\}$, and define $\tau \colon U \cap V \to \mathrm{GL}(1, \mathbb{R})$ by

$$(1) \quad \text{Im } z > 0,$$

- that P is smoothly isomorphic to the Mobius bundle of Example 5.2
- 5-7. Compute the transition function for TS^2 associated with the two local trivializations determined by stereographic coordinates.
- 5-8. Let $\pi\colon E\to M$ be a smooth vector bundle of rank k, and suppose σ_1,\ldots,σ_m are independent smooth local sections over an subset $U\subset M$. Show that for each $p\in U$ there are smooth tions $\sigma_{m+1},\ldots,\sigma_k$ defined on some neighborhood V of p such $(\sigma_1,\ldots,\sigma_k)$ is a smooth local frame for E over $U\cap V$.
- 5-9. Suppose E and E' are vector bundles over a smooth manifold M, and $F: E \to E'$ is a bijective bundle map over M. Show that F is a bundle isomorphism.
- 5-10. Consider the following vector fields on \mathbb{R}^4 :

$$X_{1} = -x^{2} \frac{\partial}{\partial x^{1}} + x^{1} \frac{\partial}{\partial x^{2}} + x^{4} \frac{\partial}{\partial x^{3}} - x^{3} \frac{\partial}{\partial x^{4}},$$

$$X_{2} = -x^{3} \frac{\partial}{\partial x^{1}} - x^{4} \frac{\partial}{\partial x^{2}} + x^{1} \frac{\partial}{\partial x^{3}} + x^{2} \frac{\partial}{\partial x^{4}},$$

$$X_{3} = -x^{4} \frac{\partial}{\partial x^{1}} + x^{3} \frac{\partial}{\partial x^{2}} - x^{2} \frac{\partial}{\partial x^{3}} + x^{1} \frac{\partial}{\partial x^{4}}.$$

Show that there are smooth vector fields V_1, V_2, V_3 on \mathbb{S}^3 such that V_j is ι -related to X_j for j = 1, 2, 3, where $\iota : \mathbb{S}^3 \hookrightarrow \mathbb{R}^4$ is inclusion. Conclude that \mathbb{S}^3 is parallelizable.

5-11. Let V be a finite-dimensional vector space, and let $G_k(V)$ be the Grassmannian of k-dimensional subspaces of V. Let T be the disjoint union of all these k-dimensional subspaces:

$$T = \coprod_{S \in G_k(V)} S;$$

and let $\pi: T \to G_k(V)$ be the natural map sending each point $x \in S$ to S. Show that T has a unique smooth manifold structure making it into a smooth rank-k vector bundle over $G_k(V)$, with π as projection and with the vector space structure on each fiber inherited from V. [Remark: T is sometimes called the tautological vector bundle $G_k(V)$, because the fiber over each point $S \in G_k(V)$ is S if

- 5-12. Show that the tautological vector bundle over $G_1(\mathbb{R}^2)$ is to the Möbius bundle. (See Problems 5-2, 5-6, and 5-11)
- 5-13. Let V_0 be the category whose objects are finite-dimensional real vector spaces and whose morphisms are linear isomorphisms. If \mathcal{F} is a covariant functor from V_0 to itself, for each finite-dimensional vector