PROBLEMS FROM LEE:

on Vector Bundles: chapter 5, problems 5-2, 5-5, 5-12.
on Vector fields and parallelization : 5-10. (Here you are asked to check some details around a parallelization of S^{3}. See 'My PROBLEM 1" for where these three vector fields came from.)
on Tensor Fields: 11-4.

MY PROBLEMS

ON PARALLELIZATION and the 3 -sphere as a group.
My PROBLEM 1. Identify S^{3} with $S U(2)$ or- what is the same $-S p(1)$ - the unit quaternions - in the standard way by letting $S U(2)$ act on S^{3} and observing that the action is free and transitive. Write down this diffeo explicitly. Show that the vector fields of Lee's problem 5-10 correspond to the standard basis for the Lie algebra, namely i, j, k in quaternionic language. [See also Lee's problem 9-9, 8-19 and 8-20]

ON THE NORMAL BUNDLE; TUBES, etc.

Background.
The normal bundle $N(C)$ to a smooth embedded submanifold C in Euclidean space \mathbb{R}^{n} is the vector bundle whose fiber at $p \in C$ consists of all vectors orthogonal ("normal") to the tangent space $T_{p} C$. Thus $N(C)=\left\{(p, v) \in C \times \mathbb{R}^{n}: v \perp T_{p} C\right\}$. The normal bundle map, or "exponential map" is the map $N(C) \rightarrow \mathbb{R}^{n}$ sending (p, v) to $p+v$.

MY PROBLEM 2. Let C be the parabola $y=x^{2}$ in the plane \mathbb{R}^{2}. Compute the locus of critical values of the normal bundle map $N(C) \rightarrow \mathbb{R}^{2}$.

Hint: this locus will be a cubic cusp, lying above the parabola, having the reflectional symmetry of the parabola.

Hint 2 - if you are stuck go to problem 2.
Background. Take the special case of planar closed curves, so that C is a closed smooth embedded curve of length L in the plane \mathbb{R}^{2}. Its points can be parameterized by arc length via a map $s \mapsto c(s) \in \mathbb{R}^{2}$ from $\mathbb{R} \rightarrow \mathbb{R}^{2}$ whose image is C and which is periodic of period L : $c(s+L)=c(s)$. Write $T(s)=d \gamma / d s$ for the corresponding unit tangent vector to C. Let J be the operation of rotation by 90 degrees counterclockise in the plane: $J(a, b)=(b,-a)$. Write $N(s)=J T(s)$ be its normal vector.

MY PROBLEM 3.
a) Show that the normal bundle to C is diffeomorphic to $S_{L}^{1} \times \mathbb{R}$ by sending $(s, t) \mapsto$ $(c(s), t T(s))$. Here the circle S_{L}^{1} is the circle of "circumference" L, which is to say the quotient space $S^{1}=\mathbb{R} / L \mathbb{Z}$. Then the normal exponential in s, t coordinates is the map $F(s, t)=\gamma(s)+t T(s)$.
b) Show this map F is a diffeomorphism from a neighborhood of $S^{1} \times\{0\} \subset S^{1} \times \mathbb{R}$ to a neighborhood of C in the plane.
c) For $p=F(s, t)$ in this diffeomorphic neighborhood of (b), show that the distance from p to C is $|t|$ and the closest point to p on the curve C is $c(s)$.
d) Relate the set of critical values $\left(s_{*}, t_{*}\right)$ of the normal exponential map to the curvature at $c\left(s_{*}\right)$ of the curve.

Hints. Use T, N as basis in the range space for your computations of the rank of $d F$. Look up the 2-dimensional Frenet-Serret equations if you have forgotten them.

MY PROBLEM 4. Repeat, problem 2, a closed space curve. Thus, suppose now that $c: \mathbb{R} \rightarrow \mathbb{R}^{3}$ is a smooth periodic immersion of period L as before, so that c defines an embedded closed curve of length L, and with $\|d c / d s(s)\|=1$. Setting $T(s)=d c / d s$, the unit tangent, we define the normal $N(s)$ by $d T / d s=\kappa(s) N(s)$, the first of the FrenetSerret equations, and we assume, for simplicity that $\kappa(s)$ never vanishes. Define the
binormal $B(s)=T(s) \times N(s)$ [vector cross product], so that $T(s), N(s), B(s)$ is a moving frame along the curve the "Frenet-Serret frame". Set $F(s, u, v)=c(s)+u N(s)+v B(s)$.
a) Show F is a diffeomorphism of a neighborhood of $S_{L}^{1} \times\{0\}$ in $S_{L}^{1} \times \mathbb{R}^{2}$ to \mathbb{R}^{3}.
b) Formulate and prove the analogue of Problem 3 b.
c) Show that for ϵ sufficiently small, let $S^{1}(\epsilon)$ denote the radius ϵ circle in the $u v$ plane. Show that the image under F of $S_{L}^{1} \times S^{1}(\epsilon)$ consists of the points of \mathbb{R}^{3} whose distance from the image curve is precisely ϵ. Show this space is an embedded torus.
d) Find conditions on curvature κ and torsion τ which guarantee that F becomes singular at point (s, u, v) with $u(\kappa(s), \tau(s)), v(\kappa(s), \tau(s))$ for some functions u, v that you are to determine.

PROBLEM 5. For any embedded submanifold C of \mathbb{R}^{n} show that $T C \oplus N(C)$ is the trivial bundle, $C \times \mathbb{R}^{n}$, when viewed as a smooth vector bundle over C.

ON QUOTIENT SPACES

MY PROBLEM 6.

Define an action of the integers \mathbb{Z} on $\mathbb{R}^{3} \backslash\{0\}$ by $k \cdot(x, y, z)=2^{k}(x, y, z):=\left(2^{k} x, 2^{k} y, 2^{k} z\right)$ for k an integer. Prove that the corresponding quotient space $\left(\mathbb{R}^{3} \backslash\{0\}\right) / \mathbb{Z}$ is diffeomorphic to $S^{2} \times S^{1}$.

Hint: rewrite this \mathbb{Z}-action in spherical coordinates.

