POINCARÉ’s MODELS

of the

HYPERBOLIC PLANE
‘Universe’ = Open Region of the usual plane \mathbb{C} = model of hyperbolic plane

Boundary of region = ∂ = “the Ideal” = points at ∞

Geodesics = “Circles” perpendicular to ∂

Orientation preserving Isometries = LINEAR FRACTIONAL TRANSFORMATIONS WHICH map the Universe onto itself. NAME: $ISOM_+$

Angles = What they look like! (as per Euclidean). Model is “Conformal”

Distances: any point in the Universe has an infinite distance from the ideal
Upper half plane: Region: $y > 0$

$\partial = \text{Ideal} = \{y = 0\} = \text{real axis}$.

Geodesics = vertical (Euc.) rays $x = x_0, y > 0$. And (Euc.) half-circles w center on ideal ,

$ISOM_+ =$ Linear fractionals with a, b, c, d real , $ad - bc > 0$. NAME: $\mathbb{PGL}(2, \mathbb{R})$ or $Sl(2, \mathbb{R})/\pm 1$

Angles = what they look like!

Infinitesimal distance: $ds = \frac{|dz|}{y}, |dz| = \sqrt{dx^2 + dy^2} = ds_{Euc}$
DISC MODEL: Region = unit disc $r < 1$ where $r = |z| = \sqrt{x^2 + y^2}$

$\partial = \{r = 1\} =$ unit circle.

Geodesics = Diameters. And arcs of circles perpendicular to ∂

$ISOM_+ =$ Linear fractionals whose matrix preserves the Hermitian form $z_1 \bar{z}_1 - z_2 \bar{z}_2$. NAME: $PU(1, 1)$ or $SU(1, 1)/\pm 1$.

Angles = What they look like!

Infinitesimal distance $= ds = \frac{|dz|}{(1-r^2)}$, $|dz| = \sqrt{dx^2 + dy^2} = ds_{Euc}$
EXERCISE (SOME VERSION OF WHICH WILL LIKELY BE ON FINAL)

In each model draw a line. Draw a point not on that line. Draw lots and lots of parallels to the line through the point.
Following Klein’s Erlangen program, we first focus more intently on the transformation groups ISO_M^+ of these models -the rigid motions of the geometry – rather than their lines, angles, trigonometry, areas, parallels.

so ...

GO TO MOBIUS TRANSFORMATIONS slides and STEREO PROJ