1. Construct the 1 bisector of \(\overline{AB} \)

Steps:

a) Draw 2 semi circles of radius \overline{AB} at centers A and B.

b) Label the intersections of the semi circles D, E and connect the two points.

c) Label the intersection of DE and AB, C.

Claim \(\overline{DE} \) is the 1 bisector of \overline{AB}.

\[\text{Pf:} \]

Consider $\triangle DAB \sim \triangle EAD$.

\[\overline{AD} = \overline{DE} = \overline{AE} \quad \text{(radii)} \]

\[\triangle DAB \cong \triangle EAD \quad \text{(SSS)} \]

\[\angle ADB = \angle AEB \quad \text{(corresponding)} \]

\[\angle DAB = \angle EBA \quad \text{(CE-S)} \]

\[\angle DCA = \angle ECA \quad \text{(CPCTC)} \]

\[\angle DCE = \angle EDE \quad \text{(CPCTC)} \]

\overline{DE} is the 1 bisector of \overline{AB}.

2. Given points A, B prove the locus of points equidistant from A, B is equal to 1 bisector of line segment \overline{AB}.

From problem 1, \overline{DE} is the 1 bisector of \overline{AB}, thus $\overline{AC} = \overline{CB}$ and $\angle PCB = \angle PCA = 90^\circ$.

Pick any point, P on \overline{DE} and draw lines from P to A and B.

Consider $\triangle APC \sim \triangle BPC$.

by $\text{SAS, } \angle APC = \angle BPC$ and $\overline{PA} = \overline{PB}$ (CPCTC).

If $\overline{PA} = \overline{PB}$, then $\angle PAC = \angle PBC$ and $\overline{AC} = \overline{BC}$ (congruent).

\[\angle APC = \angle BPC, \text{ which implies that} \]

\overline{PC} is in \overline{DE}.\]