19A Practice Final

March 10, 2018

For problems 1-3, let $f(x)=2 x e^{-x^{2}}$.

Problem 1

(a) Draw the graph of f
(b) Are there any critical points?
(c) If so, identify which (if any) correspond to local min/max's

Problem 2

Find the equation for the tangent line at the point $(0, f(0))$.

Problem 3

Express

$$
F(x)=\int_{0}^{x} f(t) d t
$$

explicitly by evaluating the integral.

Problem 4

Identify (all!) the local extrema of the function $g(x)=x \sin (x)+\cos (x)$.
Problem 5 Box problem
Suppose we are putting together a cardboard box with no top, with dimensions length (l), width (w), and height (h) so that $l=2 w$, and whose volume is $V=l w h=50$. What is the minimum amount of cardboard needed to achieve this?

Problem 6

Apply Newton's method to the function $f(x)=x^{2}-x-1$ to approximate the golden ratio $\Phi=\frac{1+\sqrt{5}}{2}$. Note that Φ satisfies $\Phi^{2}=\Phi+1$.

Note: approximate Φ up to at least two non-integer values.

Problem 7

Let

$$
G(x)=\int_{0}^{x} \sin \left(t^{2}\right) d t .
$$

Compute $\frac{d}{d x} G(x)=G^{\prime}(x)$.

Problem 8

Suppose a population P with intial population $P_{0}:=P(0)=100$ is modeled by the differential equation

$$
\frac{d}{d t} P(t)=P^{\prime}(t)=\frac{1}{1+t^{2}} P(t)
$$

Find $P(t)$.

Problem 9

Maximize the product $x y$ when x and y are constrained to the ellipse given by the equation

$$
x^{2}-x y+y^{2}=1 .
$$

(Think about whether or not your answer makes intuitive sense.)

