Comparing Sizes of functions; large and small limits.

If $p(x)$ is a polynomial with leading coefficient positive then $p(x) \rightarrow+\infty$ as $x \rightarrow 0$.
If in addition the degree of p is even then $p(x) \rightarrow+\infty$ as $x \rightarrow-\infty$, but if the degree of p is odd then $p(x) \rightarrow-\infty$ as $x \rightarrow \infty$.

Example $x^{3}+x^{2} \rightarrow-\infty$ as $x \rightarrow-\infty$.
Corollary [using the Intermediate Value theorem] Every odd degree polynomial has a real root.
Guiding principles for which functions are larger than as x gets large or gets small:
a) For $x>1$ we have : $1<x<x^{2}<x^{3}<\ldots$.
b) For $0<x<1$ we have $x^{n+1}<x^{n}<\ldots<x^{3}<x^{2}<x<1$.

Proofs: an inequality is true if and only if when we multiply both sides of it by a positive number it remains true.

Proof of (a) : observe that $1<x \Longleftrightarrow x<x^{2} \Longleftrightarrow x^{2}<x^{3}$ etc
Proof of (b): observe that $x<1 \Longleftrightarrow x^{2}<x \Longleftrightarrow x^{3}<x^{2}$ etc.
Exponentials beat polynomials
For any polynomial $p(x)$ we have that eventually $p(x)<e^{x}$. Moreover $p(x) / e^{x} \rightarrow 0$ as $x \rightarrow \infty$.
Rational Functions are quotients of polynomials: $r(x)=p(x) / q(x)$.
If $\operatorname{deg}(p)<\operatorname{deg}(q)$ then $r(x) \rightarrow 0$ as $x \rightarrow \infty$.
If $\operatorname{deg}(p)>\operatorname{deg}(q)$ then $r(x) \rightarrow \pm \infty$ as $x \rightarrow \infty$.
If $\operatorname{deg}(p)=\operatorname{deg}(q)$ then $r(x) \rightarrow a_{d} / b_{d}$, a finite nonzero number, where $p(x)=a_{d} x^{d}+\ldots$ and $q(x)=$ $b_{d} x^{2}+\ldots$.

Example $r(x)=\left(x^{2}-1\right) /\left(x^{2}+1\right)$ tends to 1 as $x \rightarrow \pm \infty$.
Here is another way to see what is going on , more directly with this example: $r(x)=\left(x^{2}+1-2\right) /\left(x^{2}+\right.$ $1)=\left(x^{2}+1\right) /\left(x^{2}+1\right)-2 /\left(x^{2}+1\right)=1+\left(2 /\left(x^{2}+1\right)\right.$ and the last term goes to 0 as $x \rightarrow \infty$.

