
Comparing Sizes of functions; large and small limits.
If p(x) is a polynomial with leading coefficient positive then p(x)→ +∞ as x→ 0.
If in addition the degree of p is even then p(x) → +∞ as x → −∞, but if the degree of p is odd then

p(x)→ −∞ as x→∞.
Example x3 + x2 → −∞ as x→ −∞.
Corollary [using the Intermediate Value theorem] Every odd degree polynomial has a real root.

Guiding principles for which functions are larger than as x gets large or gets small:
a) For x > 1 we have : 1 < x < x2 < x3 < ....
b) For 0 < x < 1 we have xn+1 < xn < . . . < x3 < x2 < x < 1.
Proofs: an inequality is true if and only if when we multiply both sides of it by a positive number it

remains true.
Proof of (a) : observe that 1 < x ⇐⇒ x < x2 ⇐⇒ x2 < x3 etc
Proof of (b): observe that x < 1 ⇐⇒ x2 < x ⇐⇒ x3 < x2 etc.
Exponentials beat polynomials
For any polynomial p(x) we have that eventually p(x) < ex. Moreover p(x)/ex → 0 as x→∞.

Rational Functions are quotients of polynomials: r(x) = p(x)/q(x).
If deg(p) < deg(q) then r(x)→ 0 as x→∞.
If deg(p) > deg(q) then r(x)→ ±∞ as x→∞.
If deg(p) = deg(q) then r(x) → ad/bd, a finite nonzero number, where p(x) = adx

d + . . . and q(x) =
bdx

2 + . . ..
Example r(x) = (x2 − 1)/(x2 + 1) tends to 1 as x→ ±∞.
Here is another way to see what is going on , more directly with this example: r(x) = (x2 +1−2)/(x2 +

1) = (x2 + 1)/(x2 + 1)− 2/(x2 + 1) = 1 + (2/(x2 + 1) and the last term goes to 0 as x→∞.
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