Final Review Problems. LAST WEEK of...
Problem 1. TO DO AGAIN. Question of continuity invoving the "squeezing lemma'
Example: A function $f(x)$ satisfies $1 \leq f(x) \leq e^{x}$. What can you say about the continuity of f at $x=0$?

Problem 2. DONE. A question involving Newton iteration and using the linear (tangent line) approximation.

Example: set up the Newtion iteration scheme for finding the square root of some given integer.

Problem 3. DONE. [3/5] . A question involving the fundamental theorem of calculus.

Example: differentiate $G(x)=\int_{1}^{x^{2}} s \log (s) d s$
Problem 4. DO TODAY, 3/15. A question on L'Hopital's rule. (You could also use 2nd order Taylor expansions.)

Example. Compute $\lim _{t \rightarrow 0+} \frac{e^{t}+e^{-t}-2}{t^{2}}$.
Problem 5. DONE: 3/9. A question involving implicit differentiation.
Example: A point (x, y) is constrained to move along the ellipse given by the equation $x^{2}-x y+4 y^{2}=4$.
A) Find an expression for $d y / d x$ as a function of x and y.
B) Use your expression to find the two points on the ellipse at which the tangent lines are parallel to the line $y=x$.

PROBLEM 6. TO DO:A simple optimization problem. (Boxes; Sums fixed.)
PROBLEM 7. ${ }^{* * *}$ NOT ON TEST ${ }^{* * *}$ problem on exponential growth or decay.
PROBLEM 8. DONE: A fundamental theorem of calculus question of the type given last week. I draw the graph of a function f which is the sum of step functions and piecewise linear functions. You draw the graph of $\int_{0}^{x} f(s) d s$.

Example: Graph $\int_{0}^{x} f(s) d s$, for $x \geq 0$, when
$f(x)=1$ for $0<x<2, f(x)=0$ for $2<x<4$ and $f(x)=-x+4$ for $x>4$.
PROBLEM 9. TO BE DONE. A graphing problem.
Example: Graph some functions of the form $f(x)=A x^{a}+B x^{-b}$ for $x>0$. For various exponents a, b, find values of the parameters A, B which guarantee a critical point exists in the positive quadrant (I.e the region $x>0$ and $y>0$ of the plane. Locate this critical point.

PROBLEM 10. TO DO AGAIN. A problem involving the method of bisection ${ }^{* * *}$ and / OR the intermediate value theorem.

