Final Review Problems. Dates in brackets preceding problem refer to the likely date in class when the problem will be covered.
[3/2] 1. Question of continuity invoving the "squeezing lemma'.
Example: A function $f(x)$ satisfies $1 \leq f(x) \leq e^{x}$. What can you say about the continuity of f at $x=0$?
2. A question involving Newton iteration and using the linear (tangent line) approximation.

Example: set up the Newtion iteration scheme for finding the square root of some given integer.
[3/5] 3. A question involving the fundamental theorem of calculus.
Example: differentiate $G(x)=\int_{1}^{x^{2}} s \log (s) d s$
[3/2] 4. A question on L'Hopital's rule. (You could also use 2nd order Taylor expansions.)

Example. Compute $\lim _{t \rightarrow 0+} \frac{e^{t}+e^{-t}-2}{t^{2}}$.
[3/9] 5. A question involving implicit differentiation.
Example: A point (x, y) is constrained to move along the ellipse given by the equation $x^{2}-x y+4 y^{2}=4$.
A) Find an expression for $d y / d x$ as a function of x and y.
B) Use your expression to find the two points on the ellipse at which the tangent lines are parallel to the line $y=x$.
6. A simple optimization problem. (Boxes; Sums fixed.)
7. A problem involving exponential growth or decay.
$[3 / 7]$. Another fundamental theorem of calculus question of the type given last week: I draw for you the graph of a combination of step functions and piecewise linear functions. You are to draw its integral ("moving sum"', indefinite integral) from 0 to x, x now being the independet variable.

Example: Graph $\int_{0}^{x} f(s) d s$, for $x \geq 0$, when
$f(x)=1$ for $0<x<2, f(x)=0$ for $2<x<4$ and $f(x)=-x+4$ for $x>4$.
9. A graphing problem.

Example: Graph some functions of the form $f(x)=A x^{a}+B x^{-b}$ for $x>0$. For various exponents a, b, find values of the parameters A, B which guarantee a critical point exists in the positive quadrant (I.e the region $x>0$ and $y>0$ of the plane. Locate this critical point.
10. A problem involving the method of bisection.

Possible extra credit problems:
11. A problem involving geometric series.
12. A problem involving the size of infinite sets.

